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Introduction:

This workshop is about two related sets of ideas. Let us call them the ho-
motopy calculus and the manifold calculus. Each of them is a method of
describing spaces (or other objects) up to weak homotopy equivalence by
making heavy use of categories, functors, and naturality. In a typical ap-
plication of the method, one gains information about a space by viewing
the space as a special value of a suitable functor, analyzes the functor using
“calculus”, and then specializes. Thus the principal objects of study become
some rather broad category of functors. A constant theme is the systematic
approximation of these functors by functors of much more special kinds.

The homotopy calculus deals with homotopy functors from, for example,
the category of topological spaces to itself. Here “homotopy functor” means
“functor that takes (weak) equivalences to (weak) equivalences”. The main
sources for the general theory are [4][5][6].

The manifold calculus deals with contravariant functors from the partially
ordered set of open subsets of a fixed smooth manifold M to, for example,
the category of spaces. Again the functors must satisfy a kind of homotopy
invariance; roughly speaking, if U ⊇ V is a collar then the map F (U) → F (V )
is an equivalence. The main sources for the general theory are [17] [10].
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For lack of time we have omitted a third theory, the orthogonal calculus,
which deals with functors, continuous on morphisms, from the category of
finite-dimensional real Hilbert spaces and isometric linear injections to the
category of spaces. See [18].

Let us first discuss the homotopy calculus. The central idea here is ap-
proximation of functors by “linear” functors, just as in the ordinary differ-
ential calculus the central idea is the approximation of functions by linear
functions. Linearity means the following. Call the homotopy functor F ex-
cisive if it takes homotopy pushout squares to homotopy pullback squares
and call it reduced if the unique map F (∗) → ∗ is a weak equivalence. Call
it linear if it is both excisive and reduced. A typical linear functor from
based spaces to based spaces will, up to natural equivalence, have the form
L(X) = Ω∞(C ∧ X), at least on finite CW complexes X. Here C is some
spectrum, which can be called the coefficient of the linear functor.

There is a standard process, which is sometimes called stabilization and
here is called linearization, for turning a reduced functor F into a linear
functor L. Roughly speaking, there is a natural map from F (X) to ΩF (ΣX)
and one iterates this to make the stabilization, the homotopy colimit of
ΩkF (ΣkX) as k goes to infinity. If F is linear then L is (equivalent to) F ,
and in general L is the universal example (in an appropriate up-to-homotopy
sense) of a linear functor under L. The coefficient of L is called the derivative
of F at the one point space.

More generally the derivative ∂yF (Y ) of F at the space Y and basepoint
y can be defined as the coefficient of the stabilization of the functor

Z 7→ hofiber(F (Y ∨y Z) → F (Y ))

from based spaces to based spaces.
There is another useful generalization. The excision condition concerns

the behavior of a functor on two-dimensional cubical diagrams. We call a
functor n-excisive if it satisfies a cerain condition involving (n+1)-dimensional
cubical diagrams, so that 1-excisive means excisive. It turns out that again
for any F there is a universal n-excisive functor under F . We call it PnF and
think of it as the nth Taylor polynomial of F . There are maps PnF → Pn−1F ,
and F maps into the limit of this “Taylor tower”.

The nth layer of the tower, meaning the homotopy fiber of PnF → Pn−1F ,
is analogous to a homogeneous polynomial; it is an n-excisive functor whose
(n − 1)-excisive approximation is trivial. Such things turn out always to
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have the form Ω∞(C ∧ X∧n)hΣn , at least on finite CW complexes X. Here
the coefficient C is a spectrum with an action of the symmetric group Σn,
and it is called the nth derivative of F (at ∗).

Most functors encountered in practice are not n-excisive for any n, but
are stably n-excisive. F is called stably 1-excisive if for a homotopy pushout
square

X → X1

↓ ↓
X2 → X12

the functor always yields a square

F (X) → F (X1)
↓ ↓

F (X2) → F (X12)

such that the map from F (X) to the homotopy pullback is k1 + k2 − c1

connected, where ki is the connectivity of the map X → Xi and c1 is a
constant depending only on F . F is callled stably n-excisive if it satisfies
a similar condition involving (n + 1)-dimensional cubes. If F is stably n-
excisive for all n and the associated sequence of constants cn has slope ρ,
then the functor is called ρ-analytic.

If F is ρ-analytic then for ρ-connected spaces X the canonical map
F (X) → PnF (X) has a connectivity that tends to infinity with n. (“The
Taylor series converges to the function” within a “radius” determined by ρ.)

If F is ρ-analytic and ∂yF (Y ) ' ∗ for all (Y, y) then F is locally constant:
any (ρ− 1)-connected map X → Y of spaces, or at least of finite complexes,
induces an equivalence F (X) → F (Y ). This can be proved using Taylor
towers. It was proved in [5] by a more direct method.

So much for the homotopy calculus. We now turn more briefly to the
manifold calculus. The most important example is the functor Emb(−, N)
which takes an open set U of M to the space of smooth embeddings of U in
another manifold N .

Here again there is a notion of n-excisive functor, and there is a way of
building a universal n-excisive functor TnF under F . It can be defined in a
few words: (TnF )(U) is the homotopy limit of F (V ) over all open sets V in
U that are tubular neighborhoods of sets having at most n elements. Once
again, if F satisfies a kind of analyticity (stable excision) condition then the
resulting tower converges for a large class of objects. Again there is a clas-
sification theorem for homogeneous functors (n-excisive functors with trivial
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(n − 1)-excisive part). We state the result briefly, assuming for simplicity
that M is compact and without boundary: up to equivalence any homoge-
neous n-excisive functor is given by specifying some fibration over the space
C(n,M) of unordered configurations of n points in M and a section σ defined
outside some compact set. The functor then assigns to each open U in M
the space of sections of the fibration restricted to C(n, U) that coincide with
σ near infinity.

The functor Emb(−, N) is sufficiently analytic that these methods give
very strong information about the space of embeddings of M in N if the
codimension dim(N)-dim(M) is at least three. In fact, in some useful but
complicated sense the homotopy type of Emb(M, N) is determined by the
family of spaces Emb(U,N), where U ranges through those open sets of M
that are tubular neighborhoods of finite sets.

The talks at this workshop will deal mostly with the general results men-
tioned above and some generalizations. Of course important examples will
be introduced, but we will not venture very far into serious applications of
the theory, such as applications of homotopy calculus to algebraic K-theory
and to classical homotopy theory.

The decision to occupy ourselves more with general theory than with
applications was made partly because there is a lot of general theory to cover
and partly to keep the talks accessible to a broad audience. We hope that
there will also be informal sessions in the evenings on more specialized topics.

Homotopy calculus and manifold calculus can be presented as separate
and parallel subjects, but in fact the former had its genesis in the latter and
there is an ongoing interplay between the two. This will be the subject of
the final talk.

Anyone who is contemplating giving a talk should feel free to ask the
organizers to expand on the brief descriptions below.

Talks:

1. Introduction

This talk, by Goodwillie, will broadly survey the field and the week
ahead. It will go into detail about some things, including (1) the classes
of functors to be studied in the two kinds of calculus and (2) the stabi-
lization or linearization process which is the beginning of the subject.
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2. Cubical diagrams and n-th order excision

This talk sets the stage by establishing some terminology and basic facts
concerning n-dimensional cubical diagrams (or for brevity “cubes”).
The content is essentially section 1 of [5].

A cube of spaces determines a map from the “initial” space to the
homotopy limit of the rest of the diagram. The cube is homotopy-
cartesian (or for brevity cartesian) if this map is a weak equivalence,
and is k-cartesian if the map is k-connected. A cube of based spaces
has a total homotopy fiber, which can be identified with the homotopy
fiber of this map. There are also the dual notions.

A map X → Y of n-cubes can be viewed as an (n + 1)-cube, and there
is an important and elementary family of statements such as “if Y and
(X → Y ) are k-cartesian then X is k-cartesian” and “if (X → Y ) and
(Y → Z) are k-cartesian then (X → Z) is k-cartesian”. These should
be explained in some detail.

The talk can be mainly about cubes of spaces, but the ideas are rather
general and there should be some discussion of other cases, such as
cubes of spectra and chain complexes. In particular there is the impor-
tant point that for spectra or chain complexes homotopy cartesian is
the same as homotopy cocartesian.

The second half of the talk is about n-excisive functors. In each of the
two kinds of functor calculus (homotopy and manifold) some functors
are called n-excisive. Give these definitions (from section 3 of [5] and
from section 2 of [17] respectively. Weiss uses the term “polynomial of
degree at most n”.)

Give examples of such functors.

For example, the product with a fixed space gives a functor from spaces
to spaces that preserves homotopy cocartesian squares, and a simi-
lar statement holds for smash products. Smashing with a fixed spec-
trum gives a 1-excisive functor from based spaces to spectra. If a
functor F (X1, ..., Xn) of n variables is 1-excisive in each variable then
F (X, ..., X) is n-excisive (Prop 3.4 of [5]). Define the nth order crossef-
fect of a homotopy functor (see page 23 of [6]) and show that in the case
of an n-excisive functor the crosseffect is 1-excisive in each variable.
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In the manifold calculus, examples arise as follows: If E → M is a
fibration over the manifold M then the functor F (U) = {sections U →
E} is 1-excisive. One can mention (without proof) that up to natural
weak equivalence this is the only sort of example of a 1-excisive functor
F such that F (∅) ' ∗. [One can also mention (again without proof)
that the example F (U) = {Immersions of U in N} is 1-excisive; in fact,
a statement of that kind is the key step in the proof of the Smale-Hirsch
reduction of immersion theory to homotopy theory.]

There are similar ways of constructing n-excisive examples, using a
fibration over the space of unordered configurations in M(see section 7
of [17]). These should be described, probably without proof.

3. Analyticity and the higher order Blakers-Massey theorems

In the homotopy calculus setting a functor is called “analytic” if it is
sufficiently “stably n-excisive” for all n. The definition is in section 4
of [5].

The most important example is the identity functor from spaces to
spaces. The Blakers-Massey theorem says that a cocartesian square of
spaces

A → B
↓ ↓
C → D

is (p + q − 1)-cartesian if A → B and A → C are p and q connected.
An easier “dual” statement says that if the square is cartesian then
it is (p + q − 1)-cocartesian if C → D and B → D are p and q con-
nected. There are important generalizations to n-cubes, which we call
the higher Blakers-Massey theorems or HBM for short.

The first quarter of the talk can be devoted to stating these results ([5]
2.3, 2.4, 2.5, 2.6) and defining analyticity ([5] section 4).

The next part can be used to demonstrate how these results can be used
to show that various other functors from spaces to spaces or spaces to
spectra are analytic. Certainly do 4.4 and 4.5 from [5], and maybe 4.6.

The last part can sketch the proof of HBM. Of the four statements, 2.3
is the most important, 2.4 is a generalization, and 2.5 and 2.6 are their
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duals. The proof of 2.3 is by induction on n, and the proof requires
that 2.4 is proved at the same time.

Suggestion: sketch the proof of 2.3 for 2-cubes, deduce 2.4 for 2-cubes,
deduce 2.3 for 3-cubes, and maybe deduce 2.4 for 3-cubes. That at
least gives the main idea without too much bookkeeping.

If the speaker wants to present a different proof of HBM instead, s/he
is welcome to do so. The proofs in [5] use smooth general position
arguments. The classical (n=2) case of 2.3 is usually proved using
homology. [2] has a different proof of 2.3.

4. Disjunction and excision for spaces of embeddings

In the manifold calculus there is an analogous notion of “analytic func-
tor”. The definition is in [10], 2.1. The main reason why functor
calculus is useful in the study of spaces of (codimension > 2) embed-
dings is that the functor F (U) = Emb(U,N) is analytic. This talk
is about that analyticity The strong version by Klein and Goodwillie,
quoted in [10] 1.1, has unfortunately still not been written up properly.
A large part of the proof is contained in the pair of preprints [7] [8],
which yield a slightly weaker version. A much weaker (in most cases)
but still useful version can be obtained rather easily from HBM.

This talk will contain (1) the definition of “analytic” in the manifold
calculus, (2) the statement of Goodwillie and Klein, (3) exploration
of the geometric content of the statement (“disjunction” results are
equivalent to excision results), (4) proof of the much weaker statement
mentioned above, and (5) maybe some discussion of the proof of the
stronger version.

The introduction to [8] should be a good source for (2), (3), and (4).

The ingredients in the proof of (5) are HBM, Goodwillie’s thesis [3] and
the Browder-Casson-Sullivan-Wall theorem from surgery theory. Good-
willie’s thesis is an analyticity statement for the functor CEmb(U,N),
concordance embeddings. (It is much more analytic than Emb(U,N).)

There will probably not be time for any but the briefest outline of (5),
even treating the surgery and [3] as black boxes. The speaker should
probably confer with Goodwillie about how to handle this.
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5. n-excisive functors

This talk presents a strategy, which we may call Mayer-Vietoris induc-
tion, for exploiting nth order excision.

For example, in the manifold setting an n-excisive functor of open sets
is in some sense determined by its behavior on those objects which
are disjoint unions of at most n balls; namely if F and G are two
such functors and T : F → G is a natural map then in order for
T : F (U) → G(U) to be a weak equivalence for every U it is sufficient
if this is so when U is of that special kind. This is 5.1 of [17].

Similar statements hold in the homotopy setting: an n-excisive functor
from spaces (or from spaces over a fixed space) to spectra is determined
on finite complexes by its behavior on sets with at most n elements.
See for example 5.8 of [6] for a proof when n = 1, and it is not hard
to generalize. It is important to have spectra rather than spaces here.
A useful observation is that these statements are true for space-valued
functors if “n-excisive” is replaced by the dual condition saying that
strongly cocartesian (n+1)-cubes go to COcartesian cubes. This ”dual”
variant is also true in the spectrum-valued case; in fact in that case the
dual statement is the same as the original because cartesian equals
cocartesian.

There should be time at the end of the talk to discuss a family of
stronger statements, which assert that in the homotopy setting an n-
excisive functor is determined in a much stronger sense by its values
on sets with at most n elements. For example, an n-excisive functor
from finite CW complexes to spectra is naturally equivalent to the
homotopical left Kan extension of its restriction to the full subcategory
of sets with at most n elements (and the homotopical left Kan extension
of any functor on that subcategory is n-excisive). This yields a nice
classification theorem for such n-excisive functors. A simple result in
the same family says that a reduced 1-excisive homotopy functor F
from based finite complexes to based spaces is naturally equivalent to
the functor “− ∧ F (S0)”.

Again all of this is true for functors to spaces as long as “n-excisive”
is replaced by the dual notion. From an expository point of view this
dual space case may be a good way of approaching the spectrum case.
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The proofs of these assembly statements (reconstructing a functor from
its restriction to a small class of objects in the presence of an excision
hypothesis) make use of the weaker statements in the first part of the
talk.

Perhaps the speaker can supply the proofs, with hints from the orga-
nizers if needed.

6. Weiss’ Taylor tower in the manifold case, part I

For a good functor F from open subsets of M to spaces Weiss makes
a functor TnF and shows that it is the universal example of an n-
excisive functor with a map from F . It may be thought of as the nth
Taylor polynomial of F . The functors form a tower (there is a map
TnF → Tn−1F ) and the whole tower may be thought of as a Taylor
series.

This talk will give (1) the definition of TnF , (2) a reasonable sketch
of the proof that TnF is n-excisive and universal, (3) a proof that the
tower converges to F when the functor is analytic. It will also include
(4) the statement of the theorem classifying the “homogeneous degree
n” functors – those which can occur as the nth layer (homotopy fiber
of TnF → Tn−1F ) in a Taylor tower.

The references are [17] for (1), (2), and (4), and [10] for (3). The
proof involves Mayer-Vietoris induction and a great deal of work with
homotopy limits.

7. Weiss’ Taylor tower in the manifold case, part II

This will be the proof of the classification theorem for homogeneous
functors.

The speakers for 6 and 7 should probably communicate with each other,
and they should feel free to reapportion the material among the two
talks if this looks advisable.

8. Weiss’ Taylor tower, part III

There are other ways of looking at the Weiss-Taylor tower. In the
case when M is one-dimensional, there is something like a cosimplicial
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construction [16]. In the general case there is a configuration-space
construction [9]. The quadratic part, T2Emb(−, N), can be interpreted
as a reformulation of work of Haefliger [11].

The speaker is free to present any or all of this.

9. Taylor tower in the homotopy case, part I

For a homotopy functor F from, for example, spaces to spaces, Good-
willie makes a functor PnF and shows that it is the universal example
of an n-excisive functor with a map from F . It may be thought of as
the nth Taylor polynomial of F . The functors form a tower (there is
a map PnF → Pn−1F ) and the whole tower may be thought of as a
Taylor series.

The case n = 1, already covered in the first talk, is the stabilization or
linearization process mentioned in the introduction.

This talk will give (1) the construction of PnF , (2) the proof that it is
n-excisive if F is analytic, and (3) the proof that the tower (PnF )(X)
converges to F (X) if F is analytic and X is within the “radius of
convergence”, more precisely if F is ρ-analytic and X is ρ-connected.
It will also begin the treatment of homogeneous functors. These are
the functors that can be the nth layer of a Taylor tower; they are also
the n-excisive functors F for which Pn−1F ' ∗. The reference for all
of this is section 1 of [6], but omitting the difficult 1.8 and 1.9.

It was shown in talk 2 that if F (X1, ..., Xn) is 1-excisive in each vari-
able then F (X, ..., X) is n-excisive. It is now shown that if in addition
F (X1, ..., Xn) is reduced in each variable then F (X, ..., X) is homoge-
neous, at least in the presence of some connectivity assumptions. It is
also shown that, in the spectrum-valued case, if the multilinear functor
F (X1, ..., Xn) is symmetric with respect to permutation of its variables
then the homotopy orbit spectrum for the resulting action of the sym-
metric group on F (X, ..., X) is still n-excisive and homogeneous.

State the converse: every homogeneous functor to spectra comes from
a symmetric multilinear functor in this way.

10. Taylor tower in the homotopy case, part II
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Prove the last statement in talk 9. The symmetric multilinear functor
is the nth crosseffect of the corresponding homogeneous functor. It is
called the nth differential of F . Reference: section 3 of [6]

Also prove that a homogeneous functor F to based spaces is canonically
and uniquely of the form Ω∞G, where G is a homogeneous functor to
spectra. Reference: section 2 of [6].

Also deduce from the assembly results in talk 5 that on finite complexes
a symmetric multilinear functor from based finite complexes to spectra
has the form F (X1, ..., Xn) = C ∧X1∧ . . .∧Xn, where C is a spectrum
with action of the symmetric group Σn.

The speakers for 10 and 11 should probably communicate with each
other, and they should feel free to reapportion the material among the
two talks if this looks advisable.

11. How to identify the layers of a Taylor tower

According to the results of talks 10 and 11 an analytic functor is the
limit of a tower whose nth layer has the form

Ω∞(Cn ∧X ∧ . . . ∧X)hΣn ,

where the “coefficient” Cn is a spectrum with Σn action. Cn is called
the nth derivative of F . The question arises, for particular functors F ,
what is that spectrum Cn and what is the Σn action on it?

The key to answering this question is the fact that the nth cross-effect
of the nth layer is the multilinearization of the nth cross effect of F
itself. In a little more detail: The nth crosseffect of F is a symmetric
reduced functor of n variables. The canonical map from F to PnF
induces a map from the crosseffect of F to the crosseffect of PnF ,
which is equivalent to the crosseffect of the nth homogeneous layer of
F . This is the universal example of a natural and symmetry-preserving
map from the crosseffect of F to something symmetric and multilinear.

This fact is easy to see when F is analytic. (It is also true without that
hypothesis, and this will be shown in talk 15.)

One interpretation of this fact is that the nth derivative (the coefficient
spectrum of the multilinear functor that encodes the nth homogeneous
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layer of F ) is in fact equivalent to what you get if you differentiate F n
times in the sense of talk 1. The reference for all of this is the beginning
of section 6 of [6].

All of the above could take less than half a lecture. Using this as a tool,
one should now work out some examples, including the nth derivative
of the identity functor ([12]).

12. The Taylor tower of the suspension spectrum of Map(K,−),
and of Σ∞Ω∞.

If K is a finite complex, then (as seen in talk 3) the suspension spectrum
of the functor Map(K,−) is an analytic functor. The nth derivative,
and therefore the nth layer, is described in [6] using the method of
talk 11, but in fact the whole tower was described in Gregory Arone’s
thesis. In particular the Taylor tower of Σ∞ΩnX is very thoroughly
understood.

As a sort of limiting case of this there is the tower of the functor
Σ∞Ω∞X. (This is our first encounter with functors from spectra to
spectra.)

The reference for the former is [1]. One reference for the latter is [14].

13. Homotopy calculus via cotriples

A useful property of the nth crosseffect functor (introduced in talk 2) is
that its diagonal is a cotriple (or comonad) on the category of homotopy
functors. The purpose of this talk is to discuss the fact that the fiber of
F → Pn−1F tends to be well approximated by the standard resolution
of F with respect to this cotriple within the radius of convergence of
F (that is, for ρ–connected spaces when F is ρ–analytic).

A homotopy functor F commutes with realizations if it is weakly equiv-
alent to its homotopy left Kan extension over all finite sets. One should
first establish that if F takes values in spectra and commutes with re-
alizations then the the homotopy fiber of the standard resolution of
F with respect to the nth crosseffect is (n − 1)-excisive and is hence
the loop of PnF (easy). Then show that if F is ρ-analytic and X is
ρ-connected then the functor F (X∧−) commutes with realizations and
deduce that the fiber of F (X) → Pn−1F (X) is as claimed.
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The general case for homotopy functors to spaces should now be sketched.
Perhaps this is a good time to also mention the associated spectral se-
quence for computing Pn−1F (X) in this case whose E2 page is given by
πpPn−1[πqF (X ∧−)]. As an application indicate how the Taylor tower
of the identity can be viewed as the cotriple derived theory of Curtis’
filtration via lower central series.

The primary reference for the case of homotopy functors to spaces is
[15] sections 9 and 10. This can also be used to deduce the case of
functors to spectra but a more direct method is available if one recalls
that realizations commute with finite pullbacks for spectra.

14. (Multi-)linear functors of spaces over a space

The emphasis so far has been primarily on functors of spaces, but the
results apply also to functors of spaces over a fixed space B. In that
context a linear functor is given not by smashing with a fixed spectrum
C but by a sort of fiberwise smash product with a twisted family of
spectra Cb. In the case where the linear functor is the differential of
(the restriction to spaces over B of) a homotopy functor of spaces, then
the spectrum Cb for a given point b in B is the derivative of F at (B, b).
The reference for this is the end of section 5 of [6].

There is a chain rule. It has been written down by Klein and Rognes [13]
in one way, but there is another way which is in some ways preferable.
In particular it is more general. Here is a sketch of the statement:

If F is a homotopy functor from spaces to spaces then for a space X
and points x in X and y in Y = F (X) there is a derivative spectrum
Jy

x(F ), the coefficient of the linearization of the functor

Z 7→ homotopy fiber over y of F (X ∨x Z) → F (X) = Y

from based spaces to based spaces.

If F and G are functors from spaces to spaces and W = G(Y ) and
Y = F (X) then the derivative Jw

x (GF ) of the composition may be
obtained by smashing Jw

y (G) with Jy
x(F ) for all y in Y and in some

sense summing or integrating over all y. This is unpublished but should
be understandable with hints from Goodwillie.
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15. Calculus without estimates

This talk gives the general proofs of several results which we have seen
proved for analytic functors:

• PnF is n-excisive and universal (talk 9).

• F (X, ..., X) is homogeneous if F (X1, ..., Xn) is multilinear (talk 9).

• The multilinearized nth cross effect of F is the nth crosseffect of PnF
(talk 12).

The first of these should be proved last. References for these are [6]
1.8, 3.1, 6.1.

16. The intersection of manifold calculus and homotopy calculus

Goodwillie will give this final talk, exploring the interplay between
the manifold calculus (as applied to spaces of embeddings) and the
homotopy calculus (as applied to the identity functor).
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Participation:

The idea of the Arbeitsgemeinschaft is to learn by giving one of the lectures
in the program.

If you intend to participate, please send your full name and full postal
address to

randy@math.uiuc.edu

by February 10, 2004 (if possible).
You should also indicate which talk you are willing to give:

First choice: talk no. . . .
Second choice: talk no. . . .
Third choice: talk no. . . .

You will be informed shortly after the deadline if your participation is
possible and whether you have been chosen to give one of the lectures.

The Arbeitsgemeinschaft will take place at Mathematisches Forschungsin-
stitut Oberwolfach, Lorenzenhof, 77709 Oberwolfach-Walke, Germany. The
institute offers accomodation free of charge to the participants. Travel ex-
penses cannot be covered. Further information will be given to the partici-
pants after the deadline.
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