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Introduction:

The classical Franz-Reidemeister torsion and its cousins, the Whitehead tor-
sion and Ray-Singer analytic torsion, are topological invariants of manifolds
with local coefficient systems (or flat vector bundles) that can distinguish
homotopy equivalent spaces that are not homeomorphic. In this Arbeitsge-
meinschaft, we want to sketch several natural generalisations of these classical
invariants to families of manifolds.

Regard a family p: F — B of compact manifolds M, equipped with a flat
vector bundle F' — M. Then the fibrewise cohomology groups H*(E/B; F)
form flat vector bundles over the base B. The starting point for our in-
vestigations are analogues of the Atiyah-Singer family index theorem that
relate F' to H*(E/B; F). To a flat vector bundle F' — M, one associates



Kamber-Tondeur characteristic classes ¢,(F) in H°¥(M;R), which vanish
if ' carries a parallel metric. By Bismut-Lott [§], one has

Z(—l)"c.(H"(E/B;F)):/ o(TM)co(F) € H'(B:R)

; E/B

where e(T'M) is the Euler class of the vertical tangent bundle, and the right
hand side is the Becker-Gottlieb transfer in de Rham cohomology. If one
specifies some additional geometric data, then all classes above are naturally
represented by specific differential forms. On the level of differential forms,
the equation above only holds up a correction term d7 . Here 7 is the higher
analytic torsion, which depends naturally on the fibration and the geometric
data. If both H*(E/B; F') and F admit parallel metrics, then 7 gives rise to a
secondary characteristic class 7 (E/B; F) € H**22?(B;R). An introduction
to this approach is given in [29].

Dwyer-Weiss-Williams [24] construct Reidemeister torsion for a smooth
fiber bundle p: F — B as a byproduct of a family index theory. If p is
any fiber bundle with fibers compact topological manifolds and base a CW
complex, then the family index theory states that x(p), the A-theory Euler
characteristic of p is determined by the A-theory Euler class of 74;(p), the
tangent bundle along the fiber. Here A-theory is algebraic K-theory of spaces
in the sense of Waldhausen. More precisely, by applying fiberwise Poincare
duality, and then an assembly map to the A-theory Euler class, one gets
the A-theory Euler characteristic. If p is a smooth bundle, then one gets a
stronger smooth index theorem where the A-theory Euler class is replaced
by the Becker-Euler class, which lives in the (twisted) stable cohomotopy of
E. When B is a point this result is equivalent to the classical Poincare-Hopf
theorem.

The third approach is due to Igusa-Klein [33] (see [34] for an introduc-
tion), and is somewhat different in nature. Here, one regards a generalised
fibrewise Morse function on M — B. Together with a flat vector bun-
dle F' — M, this gives rise to a classifying map from B to a Whitehead
space, and the higher Franz-Reidemeister torsion is the pullback of a univer-
sal class on the Whitehead space. There are conjectural relations between
all three definitions of higher torsion.

It turns out that higher torsion invariants are somewhat finer than clas-
sical FR torsion, since they detect higher homotopy classes of the diffeomor-
phism group of high-dimensional manifolds that vanish under the forgetful



map to the homeomorphism group. In particular, these invariants distin-
guish differentiable structures on a given topological fibre bundle M — B,
where one may even fix differentiable structures on M, B and the typical
fibre. There are also applications of higher torsions to problems in graph
theory and moduli spaces of compact surfaces. Some of these will be sketched
throughout this Arbeitsgemeinschaft.

We have grouped the talks as follows.

1.
2.

The first talk gives a short introduction to classical torsion invariants.

In talks [2H7], we discuss the Dwyer-Weiss-Williams homotopy theoret-
ical approach.

Parametrized Morse theory, Kamber-Tondeur classes and Igusa-Klein
torsion are discussed in talks [8H16, and some applications are given.

Finally, based on talks [10] and [L1], we introduce analytic torsion in the
talks [[7HI9L

Talks:

1.

Classical torsion invariants (overview).

Recall the definition of Franz-Reidemeister torsion, together with its
geometric motivation and application to lense spaces in [48], [26]. Men-
tion simple homotopy theory and Whitehead torsion [14]. Define Ray-
Singer analytic torsion [47] and state the Cheeger-Miiller theorem,
which relates Ray-Singer torsion to Franz-Reidemeister torsion, see [13],
[45]. If time permits, sketch Bismut-Zhang’s proof by Witten deforma-
tion following [9] (the equivariant aspects should be neglected).

Waldhausen K-Theory.
This talk should summarize the definition of Waldhausen K-theory,
state the main properties: additivity and fibration theorem and give
the three main examples relevant to pseudoisotopies:

(a) finite sets, giving QS?;

(b) finitely generated projective complexes, giving the Quillen K- the-
ory of a ring;

(c) finite cell complexes over X, giving A(X).
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Focus should be on the third example, which is fundamental for some
of the following talks.

References: [49] and [50], sections I1.9 and IV.6.

. Homotopy limits as spaces of sections and construction of x(p),
I.

Regard a family p: F — B of smooth compact manifolds M. When B
is not a point, then x(p) is not just an integer. Instead it is a section
of a certain associated fibration, and the construction of x(p) uses the
machinery of homotopy limits and colimits.

Define the homotopy limit and colimit of a functor F: C — Spaces,
where Spaces is the category with objects spaces homotopy equivalent
to CW complexes and maps homotopy equivalences. Discuss the spe-
cial case when F factors thru a functor F: C — Cat, the category
of small categories. In that case a point in the homotopy limit of F
is determined by a rule which assigns to each object ¢ in C an ob-
ject x(c) in F(c) and which assigns to any map a: ¢, — c; a map
x(a): F(a)y(x(c1)) — x(c2). (assuming the rule satisfies a certain 1-
cocylcle condition, see 1.3 in [24].) We call such a rule x, a characteris-
tic. A key example for us is when C is the category of finitely dominated
spaces with maps homotopy equivalences, F(X) is the category of re-
tractive spaces over X, and x(X) is the retractive space S° x X (see p.
40-41 in [24)).

Suppose C = Simp(B), the category of maps of standard simplicies into
the connected CW complex B. Then the homotopy colimit is equivalent
to the total space of a fibration over B with fibers homotopy equivalent
to F(A® — B), and the homotopy limit is equivalent to the space of
sections of that fibration.

References: see next talk.

. Homotopy limits as spaces of sections and construction of x(p),
II.

Recall the description of A(X) as the K-theory of finitely dominated
retractive spaces over X, cf. talk 2| Give the construction of x(p) as
a section of the fibration Ag(E) — B, where the fiber over b € B is
A(p~'(b)). Here p is any fibration with finitely dominated fibers and
B a CW complex. If B = %, then x(p) can be identified with the



classical Euler characteristic of E plus Wall’s finiteness obstruction.
In the special case where p: F — B is the universal fibration with
fibers homotopy equivalent to F, then y(p) can be viewed as a “crossed
homomorphism” from G(F) to A(F) which becomes the Whitehead
torsion map when composed with A(F) — Why(m F). (Here G(F) is
the topological monoid of self homotopy equivalences of F)

The map from B to a point induces a map Ag(FE) — A(FE). Lineariza-
tion gives us a map from A(E) — K(Zr), where 7 is the fundamental
group of E. A representation p of m on a f.g. projective module P over
a ring R then induces a map K(Z7) — K(R). Let x,(p) : B — K(R)
be the map gotten by composing x(p) and these maps. Explain that
when R is a regular ring, then x,(p) has a very simple description in
terms of 71 (B) acting on the homology of the fibers of p with coefficients
in P.

References:

Homotopy limits and colimits: [10], [23] (especially 3.12), Sec. 1 of [24]
A-theory: [49]

Construction of x(p): Sections 1 and 6 of [24]

Computation of x,(p): p. 43-46 of [24]

. Controlled topology and disassembly of x(p).

Give a controlled interpretation of the natural transformation w : A —
W h, where the A-theory assembly map is the homotopy fiber of w (see
7.5 and 7.6 in [24]). Suppose C from the last lecture is a category of
compact topological manifolds and homeomorphisms. We want to use
the controlled description of w plus an Eilenberg swindle argument to
trivialize the construction of xy composed with w. In fact, to give us
more flexibility we want to enlarge C to the category of euclidean neigh-
borhood retracts where a map from X to Y is given by a continuous,
proper cell-like continuous map from an open subset of X to Y (see
p.51 -54 in [24]). The goal is to get a characteristic Y where A(X) is
replaced by the locally finite homology of X represented by A(x).

Suppose F'is a compact topological manifold. This characteristic deter-
mines a lifting x”(p) of x(p) thru the fiberwise A-theory assembly map
for fiber bundles p with structure group T'op®(F), the topological group



of homeomorphisms equipped with the discrete topology. The con-
struction of x”(p) for all fiber bundles with fibers homeomorphic to F
is gotten by using McDuff’s result that the map BT op’(F) — BTop(F)
is a homology equivalence(see [24] and [43]) . In the special case when p
is the universal fiber bundle with fibers homeomorphic to F', the trivial-
ization of w(x(p) can be viewed as a parametrized version of topological
invariance of Whitehead torsion.

In the next lecture we'll use x” to construct A-theory Euler classes for
FEucildean bundles.

References:

Controlled topology: [1], [46], [51]
McDuft’s Theorem: [43]

Construction of x”: Sections 2 and 7 of [24]

. Homology and cohomology with coefficients in a parametrized
spectrum.

Give definition of homology and cohomology with coefficients in a
parametrized spectrum. Give construction of the Becker-Euler class
of a vector bundle (see p. 29-30 in [24]). Give “discrete model” for
the classifying map of the euclidean tangent bundle of a manifold(see
Theorem 3.2). Describe Poincare duality and inverse Poincare duality
via “scanning” (p.20-29 in [24]).

Notice that after applying Poincare duality the Becker-Euler class of
the tangent bundle of a smooth compact manifold M lives in 0-dim.
homology of M with coefficients in the sphere spectrum. Show that
the fiberwise Poincare dual of the tangent bundle along the fiber of a
smooth bundle is the Becker-Gottlieb-Dold transfer (see Theorem 5.4
and [20]). Notice the analogy between this result and the index theorem
which is our main goal.

Give construction of the A-theory Euler class of a Euclidean bundle
(see p. 15-18 in [24]). The unit map from QS° — A(x) induces a map
which sends the Becker-Euler class of a vector bundle to the A-theory
Euler class of the underlying Euclidean bundle (see Thm 4.10 in [24]).



References

Parametrized spectrum: [3], Remark 2.12 in [24], [42]
Becker-Gottlieb-Dold transfer: [4], [5], [16], [17], [21]
Becker-Euler class: [3], [15], [40]

. Proof of index theorem and construction of Reidemeister tor-
sion.

Give proof of index theorem when B is a point using scanning descrip-
tion of Poincare duality (see p 25-26 of [24]). Proof of index theorem
for families (see p.26-28 of [24]). Proof of smooth index theorem for
families (see p. 39 of [24]). Construction of Reidemeister torsion (see
p.64-65).

References: [20], [18], [19], [2]

. Generalized Morse functions.

This talk should give the definition of generalized Morse functions and
framed functions and state the main theorem. Eliashberg’s proof using
wrinkled maps [25] should be outlined.

A generalized Morse function (GMF') on a smooth manifold M is a
smooth function having only nondegenerate and cubic (Ajs) singulari-
ties. Eliashberg showed that this space satisfies an h-principle: it has
the homotopy type of the corresponding space of sections of the jet bun-
dle. [30] shows that this has the dimA/-homotopy type of Q(M A BO).

A framed function on M is a GMF f: M — R together with a framing
of the nonpositive eigenspace of the second derivative of f so that the
last vector lies in the null space of the second derivative and points in
the positive cubic direction. The space of framed functions is dimM-
connected [31]. This implies that, for a smooth fibration F — M — B
with dimB < dimF, there exists a fiberwise framed function f: M —
R which is unique up to framed homotopy if dimB < dimF'.

. A-infinity functors and fiberwise Morse functions.

This talk should explain the basic definition of an A-infinity functor.
When restricted to an ordinary category we obtain a twisting cochain
on the nerve of the category. This construction is basically due to Ed



10.

Brown. One elementary example is singular homology (and cohomol-
ogy) with coefficients in a field, see [37], [39], and other papers by B.
Keller.

When we have a fiberwise Morse function, i.e., a smooth function on
the total space of a bundle which is Morse on every fiber, then we can
triangulate the base B and obtain a cellular chain complex over every
simplex. The mapping which sends each simplex to the corresponding
cellular chain complex is an A, functor on the category of small sim-
plices of B, or equivalently a twisting cochain on B, see chapter 4 of [33]
and lecture 3 in [34] (This will be smoothly interpolated to produce a
finite dimensional flat superconnection to give the higher FR torsion in
another talk).

The de Rham analogue of a twisting cochain is a flat superconnec-
tion of total degree 1 as in section l.a,b of [§]. If time permits, state
theorem 1.66 and proposition 1.70 in [27], and theorem 6.20 in [2§].

Kamber-Tondeur classes.

Recall equivalent definitions of flat vector bundles as representations
of the fundamental group, as locally constant sheafs, and as vector
bundles with a flat connection. Briefly recall Chern classes of vector
bundles, and the construction of Chern-Weil forms for vector bundles
with connection.

There is a parallel construction of Kamber-Tondeur classes cori1(F)
for flat vector bundles, and of Kamber-Tondeur forms copy 1 (F, g*') for
flat vector bundles with Hermitian metrics g¥’, see [22]. These classes
are related to the Borel regulator map, see the introductions to [§] and
cite Ibook.

The Kamber-Tondeur forms of one flat bundle with two different met-
rics g&', gf differ by an exact form dco,(F, gf', gF ), where éor(F, gt gf)
is naturally defined up to exact forms. There is a natural generalisation
of this construction to vector bundles with flat superconnections as in
section 1 of [§].

If time permits, give the equivalent construction of ch® in [6], and note
that the higher Kamber-Tondeur classes are invariant under smooth
deformations of the flat connection, see [6], sections 2.6, 2.7.



11.

12.

13.

Finite-dimensional torsion classes.
Let V — M be a Z-graded vector bundle with a flat connection VV.
Flat superconnections A’ of total degree 1 on V as in section 1, 2
of [§] are analogous to Igusa’s A.-functors in talk [ The fibrewise
cohomology becomes a bundle H — M with a natural flat Gaufl-Manin
connection and an induced metric ¢g.

If A/ — VYV takes values in a nilpotent subalgebra of End(V), one can
construct a torsion form T'(A’, g") € Q" (M) such that

ca(V,9") — ca(H,g") =dT(A',¢") .

The easiest construction of this type can be found in section 2 of [§],
where A'—VV is a parallel fibrewise differential. The “finite-dimensional
index theorems” 2.22 and 2.24 should be stated. Remark that for fam-
ilies of acyclic complexes, the class T'(A’, gV') can be defined axiomati-
cally as in [§], appendix I.

For the construction of higher Franz-Reidemeister torsion and for a
comparison with higher analytic torsion, we need a slightly more in-
volved construction where A’—V" is now upper triangular with respect
to a fibrewise Morse function. Two such constructions are described in
section of 2.4 of [33] and in sections 2.b—f of [27], at least one of them
should be described in some detail. By the results of section 8 in [2§],
both give the same universal class, which can be regarded as a Borel
regulator in Volodin K-theory by section 1 of [33].

Polylogarithms.

Polylogarithms arise in the calculation of higher FR torsion because a
GMF on a manifold M gives rise to a GMF on any covering space of M
and the resulting cellular chain complex is related to the chain complex
of M by a transfer formula. In Milnor’s paper [44] on Kubert functions,
he shows that any invariant which satisfies this transfer formula must
either be a polynomial or a polylogarithm depending on parity. This
talk should explain this characterization of polylogarithms and how the
observation about covering spaces in chapter 2 of [33] forces the higher
torsion to satisfy this characterization.

Definition of higher Franz-Reidemeister torsion, I.
John Klein was the first to define higher FR torsion in the special case



14.

of a smooth bundle with a fiberwise Morse function (a function on the
total space of a smooth bundle which is Morse on each fiber). His idea
was to use a linearized version of Waldhausen’s A(X). A variation
of this construction was given in an unpublished manuscript of Igusa-
Klein [38]. This is the filtered chain compler model for algebraic K-
theory. (See [33], [37], [32].)

The theorem of Igusa-Klein is that, for any coefficient system F' of f.g.
free R modules over a space X, there is a homotopy fiber sequence

FC"X,F) — Q®5*(X,) — Z x BGL(R)"

where FC"(X, F) is the space of acyclic filtered chain complexes which
are direct sums of finitely many stalks of the coefficient sheaf F'. If we
take R = C (the complex numbers) and X = K (7, 1) where 7 is a finite
group then the Borel regulator classes which are odd degree cohomology
classes on BGL(C)™ will transgress to even degree cohomology classes
on FC"(X, F). These are universal higher Franz-Reidemeister torsion
classes.

This first talk should explain how a fiberwise Morse function on the
total space of a smooth bundle £ — B should give rise to a mapping
B — FC(E,F) for any coefficient system F' over E. In certain cases
this map can be modified to land in FC"(E, F). The definition of
FC(E, F) is designed to work for a fiberwise generalized Morse func-
tion. The framed function theorem [31] is used to give a canonical
choise of the fiberwise GMF.

Definition of higher Franz-Reidemeister torsion, I
The definition of the higher FR-torsion becomes more concrete with
the following:

(a) the Kamber-Tondeur form gives one formula for the Borel regula-
tor

(b) we replace the category of fitered chain complex by the A, cate-
gory of f.g. cellular chain complex: FC"(BG, R) ~ Wh"R, Q).

(c) we use the two index theorem to replace Wh"(R, G) with a space
of invertible matrices.

10



15.

16.

(d) the Kamber-Tondeur form transgresses to this two index version
of Wh(R,G) when R is a matrix ring over C and G is the unitary

group U(n).

The purpose of this talk is to put together the topics of the (finite
dimensional) Kamber-Tondeur form and the A, structure associated
to a fibration and the category of filtered chain complexes. The second
chapter of the memoires paper [37] is best for this explanation since
detailed proofs in [33] should not be explained.

Axioms for higher torsion.

Higher (nonequivariant) torsion can be characterized by two axioms:
additivity and transfer. Any characteristic class of unipotent smooth
bundles satisfying these two axioms has an even and odd part each of
which is unique up to a scalar multiple in each degree 4k. The unique
even torsion is the higher tautological (or Miller-Morita- Mumford)
class. The unique odd torsion is the higher FR torsion. This shows in
particular that the even part of the higher FR torsion is proportional
to the MMM class in the same degree.

One of the key points in both the proof and applications of this ax-
iomatic approach is the calculation of the higher torsion of the exotic
smooth bundles constructed by Allen Hatcher. This talk should use the
axioms to compute the odd torsion for this example. The existence and
uniqueness of odd and even torsion theories should be clearly explained.
See the lecture notes [35] and arXiv notes [36].

Computation of higher torsion.

The main point of this talk is the Framing Principle which is the main
tool for computing the higher FR-torsion. The statement is the follow-
ing.

Suppose £ — B is a smooth bundle and F' is a 1-dimensional hermitian
coefficient system on E with respect to which the bundle is unipotent
(i.e., m B acts unipotently on the homology of the fiber with coefficients
in F). Suppose that f: F — R is a fiberwise GMF. Then the higher
FR torsion of the family of chain complexes over B given by f differs
from the higher FR-torsion given by the canonical fiberwise framed
function, say ¢, by a multiple of the push-down of the chern character

11



17.

18.

of the negative eigenspace bundle of f:

72:(C(9)) = 721(C(f)) + (=1)*¢(2k + 1)pi(chax(vy) @ C)

where ( is the Riemann zeta function.

This is proved in a special case in [33] and in general in [37]. The
analogous statement for higher analytic torsion is shown in [6] and [27].
Combining the Framing Principle with the basic properties of higher
FR torsion, we can compute the higher FR-torsion in many cases.

The numerous formulae are: involution, suspension, splitting (additiv-
ity), stability, relative case, transfer. At the end of the arxiv paper [30],
the Framing Principle is used to show that higher FR torsion satisfies
the transfer axiom (additivity is clear).

The Bismut-Lott index theorem and higher analytic torsion.
Using the Kamber-Tondeur forms of talk [10, define higher analytic
torsion as in Definition 3.22 of [§], and state the Bismut-Lott index
theorem 0.1 and its geometric refinement 0.2. If time permits, sketch a
proof of theorem 0.2 along the lines of chapter 3 in [§] (it helps to also
sketch the proof of theorems 2.22 and 2.24). Remark that theorem 0.2
allows to define a cohomological torsion invariant if both the flat bundle
on the total space and its fibrewise cohomology carry parallel metrics;
see [27], Definition 2.88.

(optional) The Witten deformation and the analytic framing
principle.

Conjecturally, the higher analytic torsion of the previous talk is related
to Igusa-Klein’s higher Franz-Reidemeister torsion. Note that the ax-
ioms stated in talk [15| have not been checked completely for the higher
analytic torsion.

In the special case that £ — B admits a fibrewise Morse function, we
can prove this conjecture using the Witten deformation. In the process,
we analytically recover Igusa’s framing principle stated in talk [I6] The
main results in chapter 7 of [6] and theorem 0.3 in [28] should be stated.

The main steps in the proof are

(a) the Witten deformation as in chapter 8 of [6],

(b) several convergence results stated in chapter 9,

12



(c) a computation near the critical points in chapter 4 that gives the
“analytic framing principle”,

(d) the identification of the contribution from the “small eigenvalues”
with the finite-dimensional torsion form of talk [11]in chapters 9,
10 of [6] and chapter 4 of [27],

(e) acomparison with Igusa’s constructions in chapters 6 and 8 of [28§].

There will not be time to explain any details.

As an application, theorem 0.2 of [27], [28] should be stated (this is
based on Hatcher’s example of talk[15] and is only slightly more general
than the applications given there).

19. (optional) Higher Equivariant torsion and some computations.
For fibre bundles with compact structure group, the higher analytic
torsion can be understood and computed using ideas from equivariant
index theory.

Define equivariant Franz-Reidemeister torsion for actions of compact
Lie groups G acting isometrically on a compact manifold and parallelly
on a flat vector bundle F' — M, see [11]. Recall Kohler’s computations
for compact symmetric spaces [41]. Similarly define the infinitesimal
equivariant analytic torsion following [8], chapter 4, [I2] and [7], which
is the universal higher analytic torsion for fibre bundles with compact
structure group.

Explain Bunke’s results in [I1] and [I2] that the non-constant part of
both equivariant torsions are functions of the G-Euler characteristic
of M. Finally, state theorem 0.1 of [7], which relates both equivariant
torsions, and explain the class V.
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Participation:

The idea of the Arbeitsgemeinschaft is to learn by giving one of the lectures
in the program.

If you intend to participate, please send your full name and full postal

address to

sebastian.goette@mathematik.uni-regensburg.de

by Friday, 10th of February, 2006 at the latest.

You should also indicate which talk you are willing to give:

First choice: talk no. ...

Second choice: talk no. ...
Third choice: talk no. ...

17



You will be informed shortly after the deadline if your participation is
possible and whether you have been chosen to give one of the lectures.

The Arbeitsgemeinschaft will take place at Mathematisches Forschungsin-
stitut Oberwolfach, Lorenzenhof, 77709 Oberwolfach-Walke, Germany. The
institute offers accomodation free of charge to the participants. Travel ex-
penses cannot be covered. Further information will be given to the partici-
pants after the deadline.
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