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Introduction:

In its origin, optimal transportation is a variational problem where one min-
imizes a transportation cost when transporting one density into another
(Monge). Via its relaxed version (Kantorovich), the solution of this problem
(Brenier) connects with convex analysis. Entire classes of inequalities in ana-
lysis can be easily proven with this tool. Even for the simplest transportation
cost, i. e. the square of the Euclidean distance, the regularity theory for the
minimizers is subtle (Caffarelli and others): Its Euler-Lagrange equation is
the role model for a fully nonlinear elliptic equation in non-divergence form,
the Monge-Ampere equation. The existence and the elements of a theory
for more subtle transportation costs, like the Euclidean distance itself or the
square of a Riemannian distance, are areas of current research.

Optimal transportation can be used to introduce a metric (distance func-
tion) on the space of probability measures which metrizes the weak topology.
If the transportation cost is the square of a Euclidean or Riemannian dis-
tance, this metric can be seen as induced from a formal, infinite-dimensional
Riemannian structure on the space of probability measures (Otto). Loosely
speaking this geometry is the “complement” (in the sense of polar decompo-
sition of vector fields) of the one of the space of volume-preserving diffeomor-
phisms (Arnold), which is motivated from fluid mechanics. Like for the space
of volume-preserving diffeomorphisms, the space of probability measures has
interesting geometrical properties itself. For instance, in the Aleksandrov



sense, this space has non-positive sectional curvature, if the underlying space
has this property.

Certain entropy functionals (including the usual entropy) turn out to be
convex with respect to this geometry (McCann). Moreover, the convexity
properties of these functionals can be used to characterize lower bounds on
the Ricci curvature and the dimension of the underlying space — and can
be used to define Ricci curvature bounds in the absence of a smooth struc-
ture (Sturm, Lott-Villani). This relation between geodesic convexity and
Ricci curvature can be assimilated to the longer-known relation between the
logarithmic Sobolev inequality and Ricci curvature (Bakry-Emery). Closely
related to this property is the fact that the gradient flow (steepest descent) of
the entropy functional is a contraction if the Ricci curvature is non-negative.
In fact it is always a contraction if the underlying geometry evolves by Ricci
flow (McCann-Topping).

This brief tour d’horizon shows that over the past 15 years, many con-
nections between optimal transportation and seemingly unrelated fields have
been discovered. Three monographs [50, 51, 3| and several lecture notes
address these recent developments.

Talks:

1. Kantorovich Duality

e The first talk should begin with the formulation of the Monge
and Kantorovich problems following [37], [50], [51]; the notions
"transport maps” and ”transport plans” should be introduced.

The first result to be presented is the existence of solution to the
Kantorovich problem; Prop 2.1 in [50] (cf. Thm 4.1 in [51]).

e The explicit solution in the 1-dimensional case via monotone re-

arrangement should be given; Remark 2.19(iv) in [50].

e For the particular case where the cost function is a metric ¢(x, y) =
d(z,y) the Kantorovich problem admits a well-known dual formu-
lation (" Kantorovich-Rubinstein theorem”; e.g. Thm 1.14 in [50])
as follows

sup{/ fdu—/ fdv: f: X — R with Lipschitz constant < 1}.
X X



e The main results to be presented in this talk should be the Kan-
torovich duality for general cost functions (¢ > 0, lower semi-
continuous) as stated e.g. as Thm 1.3 and Prop 1.22 in [50] (or as
Thm 5.10(i) in [51]).

2. Optimal transports and c-convex functions

e The concepts of ”c-convex/c-concave functions” should be intro-
duced for general cost functions c; the relation to the classical
notion of convexity in the Euclidean with c(x,y) = |z — y|?/2
should be explained. The talk should also include a discussion of
the c-transform as a generalized Legendre transform and the trick
of double convexification; [42], [37], Def 5.2, Prop 5.8 in [51] (cf.
Lemma 2.10, Thm 2.9 in [50]).

To avoid confusion with different definitions of ¢-convex/c-concave
functions (even by the same authors) we agree on the sign conven-
tion of [50] for c-concave functions and we say that ¢ is c-convex
iff —¢ is c-concave.

e Moreover, the concept of ”cyclical monotonicity” should be intro-
duced and as one of the basic results Rockafellar’s theorem about
the characterization of cyclically monotone sets on R™ (Thm 2.27
in [50]) as well as its generalization to general spaces and costs
functions (Riischendorf’s theorem; [42]; Def 5.1 in [51]).

e The main result to be presented in this talk is the characteriza-
tion of optimal transports by the fact that they are supported on
the graph of the subgradient of c-convex functions; " Knott-Smith
Theorem” Thm 5.10 in [51] (c¢f. Thm 2.12, Thm 2.29, Cor 2.30,
Thm 2.32 in [50]),

3. Brenier’s solution to the optimal transport problem in the
Euclidean case, Polar factorization of vector fields

A crucial breakthrough in the understanding of optimal transports was
the observation of Brenier [8] that in the case of absolutely continuous
measures the solution to the Kantorovich problem with quadratic costs
is always given in terms of a unique transport map. (In particular, it
also yields a unique solution to the Monge problem.) The transport
map (”Brenier map”) is the gradient of a convex function. It is exactly
this convex function which already showed up as one of the pair of
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conjugate convex functions in the dual problem [50, Theorem 2.12 (ii)-
(iv)].

Various arguments presented in the previous talks will be used:

- Existence of solution 7 of the primal Monge-Kantorovich problem
[50, Proposition 2.1].

- Existence of a solution (¢, ¢*) of the dual Monge-Kantorovich
problem in the class of conjugate pairs of convex functions [8,
Theorem 3.1, proof in Section 3.4] or [50, Theorem 2.9].

- Relation between 7 and (¢, ¢*) based on duality [50, Theorem
1.3].

The main new result is the uniqueness property in the absolutely con-
tinuous case [8, Proposition 3.1, proof in Section 3.2] or [50, Theorem
2.12].

All this uses Rademacher’s theorem about the a. e. differentiability of
convex functions.

An important aspect is the stability of the transport plans and trans-
port maps under convergence of the target measures [51, Thm 5.20,
Cor 5.23]. (It suffices to consider the Euclidean case with quadratic
costs.)

As an application: Polar factorization of vector fields (i. e. the nonlinear
version of Helmholtz decomposition) [8, Theorem 1.2].

. McCann’s change of variable formula, validity of the Monge-
Ampere equation, application to Sobolev inequality

e Rigorous derivation of the Monge-Ampere equation for the poten-
tial ¢ of the optimal transport V¢ in the almost everywhere sense,
see for instance [50, Theorem 4.8 iii)].

e Change of variable formula [28, Theorem 4.4] in [28, Section 4].
See also [50, Theorem 4.8 iv)], which makes use of [28, Proposition
A2



All this uses Aleksandrov’s theorem, i. e. the twice a. e. differentiability
of convex functions ¢, see [50, Subsection 2.1.3] for the necessary in-
gredients on convex functions. It also establishes delicate observations
like the characterization of the determinant detD?@ of the Aleksan-
drov Hessian D?¢ of the convex potential ¢ as the Radon-Nikodym
derivative of the Hessian measure 0¢(A) w. r. t. the Lebesgue measure.

As an application: Elementary proof of the Sobolev inequality with
optimal constant [15, Theorem 2], see also [50, Theorem 6.21].

. Caffarelli’s regularity theory

Caffarelli’s counterexample: It shows that even for smooth densities,
the optimal transport map can be discontinuous. A proof can be found
in [50, Theorem 12.3] (the original paper [11, p.100] is very brief). It
relies on the strong convergence of the optimal transport map under
(weak) convergence of the densities [50, Corollary 5.23] and on the
monotonicity of the optimal transport map [50, Lemma 12,2] & [50,
Theorem 5.10]. In the Euclidean case, both ingredients have an ele-
mentary proof.

Caffarelli’s regularity theory is one of the pinnacles of analysis and
quite involved. A synopsis can be found in [50, 4.2.2]. The crucial
assumption is the convex support of the target measure. The following
first steps in the regularity theory should be presented:

e Validity of the Monge-Ampere equation for the potential ¢ of the
optimal transport V¢ in the sense of Aleksandrov, see [11, Lemma
2] (also [50, Theorem 4.10]).

e Validity of the Monge-Ampere equation in the sense of viscosity
solutions, [10, p. 129]. Two comparison lemmas [10, Lemma 1,
Lemma 2|. For an overview of these different solution concepts
(almost everywhere, Aleksandrov, viscosity) see [50, 4.1.4].

e Strict convexity of ¢ in a point implies differentiability in this
point [10, Corollary 1].

e Strict convexity of ¢ [11, Lemma 3.

The two last points use as a black box the fact that convex sets don’t
differ much from ellipsoids.



6. Optimal transports on Riemannian manifolds

e This will be the first talk in a Riemannian setting. Until now,
the state space was either just a metric space or the Euclidean
space. Basic concepts like Riemannian distance, volume, Lapla-
cian should be presented; Rademacher’s theorem should be men-
tioned (e.g. Thm 10.8 in [51]).

e For the most important case of quadratic cost c(z,y) = d*(z,y)/2
Lipschitz continuity and differentiability almost everywhere of c-
convex functions; Lemma 2 and Lemma 4 in [29)].

e The main results here will be that in the case c(z,y) = d(x,y)?/2,
optimal transport maps (" Brenier maps”) are given as exponential
maps of gradients of c-convex function 7'(x) = exp,(Vy(z)) Thm
8, Thm 9 and Cor 10 in [29]; Thm 10.41 in [51].

e The extension to more general cost functions should be sketched;
(it would be sufficient to consider he case c(z,y) = f(d(z,y)) for
strictly convex f and the state space being Euclidean): Thm 13
in [29] or Thm 2.44 in [50].

7. Monge’s original problem

The first solution to the original Monge problem, formulated in 1781,
was presented by Sudakov [45]; however, his proof was incomplete as
pointed out (and corrected) by Ambrosio [2]. In the meantime, under
quite restrictive assumptions on the measure to be transported, Evans
and Gangbo [17] gave a rigorous answer.

Results in full generality have been presented independently by Caf-
farelli, Feldman, McCann [12] and Trudinger, Wang [49]. In the talk,
one of these complete solutions to the original Monge problem should
be presented, cf. Thm 2.50 and Thm 2.52 in [50] (following either [2]
or [12] or [49]).

In order to construct a transport map one decomposes an optimal trans-
port plan (on R") via disintegration into transport plans on the (n—1)-
dimensional family of transport rays. Optimal transports on each of
the rays are well understood. Moreover, the cost function |x —y| will be
approximated by |x—y[? for p > 1 in order to obtain a unique transport
map. The challenge is to keep control on Lipschitz constants in order
to justify the change of variable formula on the whole configuration.
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8. The Wasserstein space P,(M) as a metric space, Benamou-
Brenier interpretation of the Wasserstein distance, Arnold’s
geometry of the diffeomorphism group

e The LP-Wasserstein distance for the space of probability measures
P,(M) on a complete separable metric space M is a complete sep-
arable metric; [50, Theorem 7.3] (or [3, Section 7.1] or [51, Theo-
rem 6.18]). The convergence in the Wasserstein metric amounts to
weak convergence + convergence of moments [50, Theorem 7.12]
(or [3, Proposition 7.1.5] or [51, Theorem 6.9]).

e The L?*-Wasserstein distance has an “Eulerian” formulation [7,
Proposition 1.1]. (The proof [7, Section 3] does not address the
approximation issue, see [34, Proposition 4.3] for a detailed proof
in the more complicated case where the underlying manifold M is
Riemannian).

e This Eulerian formulation of the L?-Wasserstein distance is rem-
iniscent of Arnold’s observation that the Euler equations of an
inviscid, incompressible fluid are the Eulerian formulation of the
geodesic equation on the group of volume preserving diffeomor-
phisms. This is in fact an easy formal observation (the pressure
is the Lagrange multiplier coming from the constraint of volume
preservation).

This motivates the study of the Lie group of volume-conserving
diffeomorphisms (where the left-invariant metric tensor is the L?-
scalar product on the Lie algebra, i. e. the space of divergence-free
vector fields), see [4, Appendix 2]. With this structure, one can
express the curvature tensor in terms of the commutator bracket
[4, Appendix 2, Theorem 10]. This can be formally used to argue
that the sectional curvature on the Lie group of volume conserving
diffeomorphisms is often negative [4, Appendix 2,Theorem 14],
which clarifies the effective unpredictability of the Euler equations
[4, Appendix 2, Section L]. See also [5, Chapter VI|. ;From a
metric point of view, this manifold has been studied in [44] where
a couple of pathologies are worked out.

9. Formal Riemannian structure for space of probability mea-
sures, its sectional curvature



10.

In a similar spirit to Arnold’s observation, the space of probability
measures p on M = R" carries a formal Riemannian structure [33,
Section 1.3], which makes the Wasserstein distance its induced distance
(33, Section 4.3] (see [36, Section 3, p.371-373] for a different heuristic
argument, which can be made rigorous [34, Proposition 4.3]).

Due to an isometric submersion [33, Section 4.1], the sectional curva-
tures can be computed [33, Section 4.5]: they are non-negative. These
observations have been extended to the space of probability measures
on a Riemannian manifold M, see [25], where also the covariant deriva-
tive is identified.

This formal observation on non-negative sectional curvatures can be
reformulated in a metric setting (via distances in a geodesic triangle,
Aleksandrov) and has been established in [3, Theorem 7.3.2] in case
of probability measures on M = R™. The proof is nice and relies on
the characterization of displacement interpolations as “shortest paths”
[3, Theorem 7.2.2] and the disintegration of measures [3, Lemma 5.3.4]
(which is also used to prove the triangle inequality).

Another, even more elementary proof based on a different characteriza-
tion of curvature in a metric context, is in [46, Proposition 2.10]. This
proof also applies to the case where the underlying space M is a metric
space with Aleksandrov curvature bounds.

McCann’s displacement convexity

Functionals of the form F(p) = [}, e(%)dvol are convex the space of
probability measures p on some (finite-dimensional) Riemannian man-
ifold M endowed with Wasserstein distance under natural assumptions
on the R 3 p +— e(p) and on the Ricci curvature of M.

e In case of M = R”, this is McCann’s celebrated observation of
“displacement convexity”, [28, Theorem 2.2] which is based on
the change-of-variable formula from Talk 4. See also [50, 5.1.3] ,
[50, Theorem 5.15 1)].

e In [33, Section 4.4], this observation has been interpreted in terms
of formal Riemannian structure on the space of probability mea-
sures, see Talk 9, by formally deriving the formula for the Hessian
of E.



e In the same spirit, in [36, Section 3], the formula for the Hessian
of E was derived in case of a general underlying Riemannian man-
ifold, making the connection with Ricci curvature via Bochner’s
formula [36, p. 374].

e The fact that non-negative Ricci curvature is sufficient has been
made rigorous [14, Theorem 6.2] by the same type of arguments
as in the Euclidean case. This is quite technical and requires the
analogue of McCann’s result (change of variable) from Talk 4 [14,
Theorem 4.2, Corollary 4.7].

e The fact that non-negative Ricci curvature is necessary has been
made rigorous in [40, Theorem 1.1].

11. Ricci bounds for metric measure space

In 1951 A. D. Alexandrov presented his concept of generalized (upper
and lower) bounds for the sectional curvature of metric spaces (M, d).
For many results in geometric analysis, no explicit bounds on the sec-
tional curvature are required but the crucial geometric quantity is a
(lower) bound on the Ricci tensor. Various of these results also hold
true for limits of such spaces, cf. [13]. One of the challenges in metric
geometry and geometric analysis, therefore, was to develop a synthetic
concept of generalized lower Ricci bounds for singular spaces. It was
clear that such bounds on the Ricci curvature should be formulated in
the framework of metric measure spaces (M, d, m).

In two independent but quite similar approaches [46], [26], the K-
convexity of the relative entropy (considered as a function on the L*-
Wasserstein space) was used as a defining property for ”Ricci curvature
being bounded from below by K”, briefly denoted by C'D(K,c0) or
Curv > K.

For the equivalence of C'D(K,o0) with lower Ricci curvature bounds
for Riemannian manifolds, see Talk 10 (or Thm 4.9 in [46], Cor 17.19

(i) in [51]).

A natural metric on the space of (equivalence classes of ) metric measure
spaces is given by the transportation distance [D. It can be regarded
as a combination of L2-Wasserstein distance (based on coupling of the
measures) with Gromov-Hausdorff distance (based on coupling of the
metrics). Its topology is closely related to the topology of measured
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12.

Gromov-Hausdorff convergence; Sections 3.1 and 3.4 in [46] and/or
Chapter 27 in [51].

The main result to be presented in this talk is the stability of the cur-
vature bound C'D(K, 00) under convergence of metric measure spaces;
Thm 4.20 in [46]; Thm 5.19 in [26].

A simple proof for the lower semicontinuity of the relative entropy
(based on a duality argument) can be found or in Thm B.33 in [26] or
in Lemma 9.4.3 in [3].

Another important property of the curvature bound C'D(K, o0) is the
local-to-global property (Thm 4.17 in [46]).

It might be worthwhile to mention that CD(K,c0) implies a Tala-
grand and a logarithmic Sobolev inequality (with the same constant
K), Chapter 6 in [26] and/or Thm 30.22, Thm 30.28 in [51]. For more
details, see discussion in Talk 15.

The curvature-dimension condition CD(K, N)

The condition C'D(K, 0o) presented in the previous talk is the weakest
in a family of conditions CD(K, N) where the parameter N € [1, 0]
plays the role of a generalized upper bound for the dimension.

The formulation of C'D(K, N) is quite involved. It gives a precise es-
timate for the deformation (under the influence of curvature of the
underlying space) of volume elements along geodesics of optimal trans-
ports. The proof that C'D(K, N) holds true on Riemannian manifolds
with given bounds for dimension and Ricci curvature is a modification
of the proof for CD(K, o), presented in Talk 10. It is worked out (and
discussed) in great detail in Chapters 14, 16 and 17 of [51]. At least,
the basic ideas should be sketched.

For weighted Riemannian manifolds (M, d,e~"'m) of dimension n, the
condition CD(K, N) is equivalent to boundedness from below by K for
the weighted N-Ricci tensor

1
' H - :
Ric + HessV N (VV @ VV)

See also [24] for interpretations and applications of this tensor, e.g. in
Bochner’s inequality (14.51) in [51]. In the case N = oo it yields the
so-called Bakry-Emery tensor.
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13.

One of the main results here is that for metric measure spaces, the
condition C'D(K, N) implies various functional analytic and geomet-
ric inequalities, e.g. inequalities of Brunn-Minkowski, Bishop-Gromov,
Bonnet-Myers: Chapter 2 in [46] and/or Sections 5.4, Chapter 6 in [26]
and/or Chapter 30 in [51].

Another main result is that the condition CD(K, N) is stable under
convergence. The proof is technically more involved but similar to
that of C'D(K, 00) presented in the previous talk. Therefore, it can be
omitted.

A crucial consequence is the compactness of the family of metric mea-
sure spaces satisfying CD(K,N) and diameter < L (analogous to Gro-
mov’s compactness result under sectional curvature bounds); Chapter
3 in [46] and Chapter 29 in [51].

The "measure contraction property” MCP(K,N) is slightly weaker
than C'D(K, N): here one considers only optimal transports where one
of the endpoints is a Dirac measure. Particular results for the following
non-Riemannian spaces might be of interest:

- On the Heisenberg group, MCP holds and CD does not hold [20].

- On Alexandrov spaces of lower bounded curvature, MCP holds
and CD is conjectured.

- On Finsler spaces, CD is equivalent to a lower bound for the
weighted N-Ricci tensor (based on so-called flag curvature) [31].

Diffusions are gradient flows of entropy w. r. t. Wasserstein
metric

e Formally, a (nonlinear) diffusion equation can be seen as the gra-
dient flow of an entropy functional E(p) (see Talk 10) on the space
of probability measures endowed with the Riemannian structure
(see Talk 9), cf. [33, Sections 1.2, 1.3].

e This connection can be given a rigorous sense via time-discretiza-
tion, which just involves £ and the Wasserstein distance, see [33,
Section 4.6]. The convergence of the time discretization has been
established in many cases by standard methods in PDE;, see e. g.
[19, Theorem 5.1] for the case of linear diffusion or [32, Theorem
3] for the case of nonlinear diffusion.
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e Using the displacement convexity of E(p), see Talk 10, a suitable
“metric” notion of gradient flow can be given and its existence
be proven via the above time-discretization, see [43, Theorem 7]
and [3, Section 4]. The general theory is complicated by the fact
that the space of probability measures as non-negative curvature,
see Talk 9. This is kind of compensated by the robust convexity
property of E (“convexity along generalized geodesics” [3, Defini-
tion 9.2.4, Lemma 9.2.7, Theorem 9.4.12]) and motivates the key
assumption [3, Assumption 4.0.1] of this abstract existence theory.

14. Contraction properties of Wasserstein metric under diffusions

In a finite-dimensional smooth Riemannian case, the convexity of E(p)
is equivalent to the fact that the distance between any two trajectories
of the gradient flow % = —gradE|p cannot increase, see for instance
[34, Section 3.1].

This principle is applied to a displacement convex entropy functional
E(p) on the space of probability measures on M = R™ endowed with
the Wasserstein in [33]. As an application, the time asymptotics for
a specific nonlinear diffusion equation, the porous medium equation,
is derived [33, Theorem 1]. The crucial statement on the contraction
property is (114) in Proposition 1, generalized to two arbitrary solutions
in (133). The proof is on pp. 145-149 and follows closely the formal
arguments in Section 3.5. It relies on the results from Talks 4 and 10.

In case of a linear diffusion equation on a manifold M, the connec-
tion between Ricci curvature and contraction in Wasserstein metric
can also be established by other methods, for instance the construction
of a coupled Brownian motion with pathwise contraction, see x) in [40,
Corollary 1.4] using geometric information xii) in [40, Theorem 1.5].

In the nonlinear case, there is another, more self-contained, rigorous
argument, which also is valid on general Riemannian manifolds M [34,
Theorem 4.1]. It relies on an infinitesimal contraction property [34,
Proposition 4.2] and a characterization of the Wasserstein distance as
infimal energy of connecting smooth curves [34, Proposition 4.3] (the
approximation argument is technical on general M’s but much easier
for M =R").

The relation between convexity and contraction is also used on an ab-
stract “metric” level in [3, Section 4].
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15. Sobolev inequality, Talagrand inequality and applications

e The logarithmic Sobolev inequality (LSI) is a non-linear version
of the spectral gap estimate (which is a Poincaré estimate) for the
generator of a semigroup coming from a drift-diffusion process. As
for the usual Sobolev inequality, it expresses a gain in integrability
— which is only logarithmic but therefore dimension-independent
and thus of use to study spin systems. LSI yields hypercontrac-
tivity of the semigroup [18, Theorem 4.1].

e The most famous criterion for LSI is due to Bakry & Emery. It
can be elegantly proved using the semigroup, see for instance [22,
Corollary 1.6]. This is related to the more general I'y-calculus [1,
Théoreme 5.4.7], which in turn in related with Talk 12.

e The Bakry-Emery criterion has a simple formal interpretation in
terms of the geometry introduced in Talk 9 and the Hessian of the
entropy calculated in Talk 10 and the interpretation of the (lin-
ear) diffusion equation as gradient flow from Talk 13 [36, Section
3]. Also the Talagrand inequality, which is a concentration prop-
erty of the stationary measure (see [21, Introduction] for these
phenomena), can be interpreted in this context. It becomes clear
that the Talagrand inequality is a consequence of LSI, which can
also be rigorously proved using the semigroup [36, Theorem 1].

e Talagrand’s inequality is related to a covariance estimate [35,
Lemma 5]. This can be used to derive a criterion for LSI [35,
Theorem 1] which in its form resembles the Bakry-Emery crite-
rion. It allows for a simple proof of LSI for a weakly interacting
spin system [35, Application I].

16. Optimal transport and Ricci flow One of the main tools in Perel-
man’s approach to the Poincaré conjecture is the monotonicity of var-
ious functionals, e.g. of his W-functional. Given a family of compact
Riemannian manifolds (M, g(7)) evolving under backward Ricci flow,
the manifold

M=MxSYN xR,

with metric § = g(7) + 2N7ggn + (N/(27) + R)d7r? will have ”approxi-
matively” nonnegative Ricci curvature. Hence, Bishop-Gromov volume
comparison will imply monotonicity of r=" - | B,(z)|.
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Optimal transport provides additional characterization of nonnegative
Ricci curvature, e.g. convexity of the entropy (cf. Talks 10 and 11) or
monotonicity of the Wasserstein distance between two solutions of the
heat equation (cf. Talk 14).

McCann and Topping extended the latter from a fixed manifold to
a time-dependent family of manifolds evolving under backward Ricci
flow. They proved that the L2-Wasserstein distance between two solu-
tions of the heat equation never increases, — independent of any curva-
ture assumption; Cor 1 in [30].

It might be interesting to remark that the latter also admits a pathwise
probabilistic interpretation via stochastic parallel transport, see [6].

In a more general approach, Topping [48] introduces the notion of L-
optimal transports, based on Perelman’s £-length and associated with
some time-dependent £-Wasserstein distance. And he used it to deduce
various important monotonicity formulas of Perelman.

The above concept of L-optimal transports and its application to mono-
tonicity formulas should be presented as one of the main topics of this
talk.

An alternative approach, but similar in spirit, was proposed by Lott
[23]. See also [16].
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