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In many classical situations in geometry or topology the “space of all possible solutions” is naturally a
configuration space of finitely many points in some manifold.

• Questions about Riemann surfaces led Hurwitz (1892) to configuration spaces in the plane and thus
to the discovery of the braid groups, with their connection to knots and links in 3-manifolds and to
mapping class groups, Teichmüller theory and moduli spaces of surfaces found later.

• The Poincaré–Birkhoff problem asks for the existence of orbits in smooth strictly convex billiads, and
the Borsuk problem (1957) is about the existence of k-regular embeddings that map any k distinct
points in Rd to k linearly independent vectors in RN , or CN .

• Even in homotopy theory, where geometric properties of maps are irrelevant, one uses (1970’s) config-
uration spaces as models for loop spaces of spheres or, more generally, for mapping spaces, to prove
stable splitting results like the Snaith splitting; this had an important influence on the development of
operads in many areas.

• In robotics, there are interesting conjectures (Kevin Walker 1985) about the geometry of linkages and
the topology of the configuration space.

• And the partition problem of Nandakumar and Ramana Rao (2005) asks for a partition of a convex
planar body into n convex pieces of equal area and equal perimeter.

All these problems are most naturally treated by methods of algebraic topology.
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Programme

In this Oberwolfach seminar we intend to develop some of the key concepts and results about configura-
tions spaces. We plan to discuss:

(1) The equivariant topology of the ordered configuration space F (Rd, n) and its relation to regular
embedddings, using its cohomology.

(2) The topology of the unordered configuration space F (Rd, n)/Sn and its relation to homotopy theory.
(3) The classifying spaces of linkages of various types and recent results centered around the solution of

the Walker Conjecture.
(4) Methods to construct G-CW models of configuration spaces like F (Rd, n) with G = Sn, and

FZ/2(Sd, n) with G = (Z/2)n oSn.

We will develop the methods in the lectures far enough in order to discuss solutions of the problems listed
above.
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Preparatory reading

As a preparation for the seminar it will be useful to consult the following material:

[1] A. Björner, Subspace arrangements. in Proc. of the First European Congress of Mathematics (Paris 1992),
vol. I, Birkhäuser, 1994, 321–370. (Sec. 1 to 7)

[2] M. Farber, Invitation to Topological Robotics. Zürich Lectures in Advanced Mathematics, EMS 2008. (Ch. 1)
[3] E. R. Fadell and S. Y. Husseini, Geometry and Topology of Configuration Spaces. Springer Monographs in

Mathematics (2001). (Parts I and II).
[4] R. Fox and L. Neuwirth, The braid groups. Math. Scandinavica, 10 (1962), 119–126. (Sec. 3 and 4)
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