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Abstract

Let a compact Lie group H act differentiably on a differentiable manifold M.
Denote the coarse slice diagram of this action by A. Assume M and A tacitly
being endowed with tubular systems.

Then a linearisation of A —if one exists — determines a differentiable structure
on the orbit space H \M . For M compact, isotopic linearisations yield isotopic
differentiable structures. For A abelian, especially for H abelian, the statements
“H \M is a topological manifold”, “there is a differentiable structure on f \M ?
and “A is linearisable” are even equivalent.

Two examples are examined geometrically: CP2, devided by complex conjuga-
tion, is diffeomorphic to $*. SU(3), devided by Twmax X Tmax, is homeomorphic
to S*. More generally, for K a compact Lie group the orbit space Tmax\K / Tox
is a manifold if and only if K is locally isomorphic to U(1)F x SU(2)! x SU(3)™
for suitalbe k,I,m > 0.

Mathematics Subject Classification (1991):

57515 Compact Lie groups of differentiable transformations



Contents

Contents .

Introduction

Chapter I Differentiable Structures on Orbit Spaces

§ 1 Equivariant Manifolds

topological manifolds and differentiable structures; actions on manifolds;

homogeneous actions; equivariant manifolds

§ 2 Equivariant Vector Spaces
equivalence relations for representations; equivariant vector spaces; slice
types of arbitrary representations; slice diagrams; stratifications

§ 3 Equivariant Vector Bundles .

reduction of the structure group of equivariant principal bundles;
equivariant vector bundles; relation to equivariant vector spaces; relation
to equivariant manifolds

§ 4 Tubular Systems

tubular neigbourhoods; tubular systems; existence of tubular systems

§ 5 Quotients of Equivariant Vector Spaces .

quotient structures; first properties; linearisisations of length 2

§ 6 Quotients of Equivariant Vector Bundles

quotients of equivariant principal bundles; quotients of equivariant vector
bundles

§ 7 Quotients of Equivariant Manifolds

abstract stratifications; the differentiable structure on the orbit space;

summary and rewiew

14

30

37

47

o4

99



4 Contents

¢ 8 Isotopies

generalities; isotopies of tubular systems; isotopies of quotients; isotopies

of quotient structures

§ 9 Products
products of objects; products of tubular systems; products of quotient

structures

Appendix A Prime Factorisation of Representations .

partitions; factorisations; excursion: short exact sequences;

representations; coarse slice types

Appendix B Fibre Bundles .

fibre bundles; principal bundles; the correspondence between principal

bundles and fibre bundles; nested bundles

Appendix C Reduction of the Structure Group

conjugateness; reduction theorems

Chapter II Special Features of the Abelian Case

§ 1 The Topological Variant

Bohm’s theorem; representations of codimensions 0 and 1; reformulation

§ 2 Corners

corners; families of corners; corners in a broader sense; morphisms;
families of corners in a broader sense; model objects and model

morphisms

§ 3 Tubular Systems of Corners .

tubular systems; choises; existence

§ 4 Smoothings of Corners

smoothings; sequences of smoothings; existence

§ 5 The Differentiable Variant

the universal abelian slice diagram A®*"; a tubular system of A®’;

a linearisation of the sd-matrix ( A*® x)

72

85

89

95

99

105

111

122

130

136



Contents

Chapter III The Diffeomorphy of CPZ/(_) to S4

§ 1 The Complex Projective Plane

the ellipse model; riemannian metric; the O(V)-action

§ 2 The Diffeomorphy of CPZ/(—) to S*

equivariant embeddings of grafimannian manifolds; the Veronese mapping;

the embedding of CPZ/(_); differentiable structures on CPZ/(_)

§ 3 The Homeomorphy of SP?(CP') to CP?

the D4-action on S? x S?; symmetric powers; the quaternions; the Hopf
map; S? x S? as a graBmannian; interpretations of §% x S* — CP?;

unification

Chapter IV The Homeomorphy of 7\SU(3) /1 to S*

g1 T\G/T In General

the real case; the complex case; the modular case

§ 2 The Diffeomorphy of Q\SO(3)/Q to §°

two-sided actions of subgroups; triangulations; differentiablilty

§ 3 The Homeomorphy of T\SU(3)/T to S*

local situation; Bruhat decomposition; the map i; topological character

of the quotients; embedding of the quotients; differentiability

Literature
Subjects
Symbols

Figures

146

151

160

173

175

186

202

205

210

215



Introduction

A differentiable manifold M with a fixed differentiable action of a compact Lie group H
is called a differentiable H-manifold.! While the dimension is the only local information
of an ordinary manifold, to each point of an H-manifold there corresponds a slice
representation. Globally we can—on the one hand — stratify M by means of the slice
types. On the other hand we can divide M by H. It seems natural to ask for stuctures
that the quotient carries or may carry.

The sheaf of invariant differentiable functions on the H-manifold induces a sheaf
on the quotient. Moreover the quotient inherits the stratification? and hence is trian-
gulable.® It is even a topological manifold (with boundary) after having removed a
suitable closed set of codimension at least three.* The question if the whole quotient
be a topological manifold is local and —in the abelian case — has an answer in terms of
representation theory.> But under which circumstances does a differentiable structure
on \M exist, and to what extent is it compatible with the structures on the quotient
mentioned above?

The quotient map is a differentiable fibre bundle in a canonical way only if all the
isotropy groups are conjugate to each other. The so called special H-manifolds are
next as regards complexity. For them Janich constructs a differentiable structure on
the quotient. According to Bredon a slightly modified structure is even canonical.
Now for arbitrary H-manifolds the question seems to have not yet been treated in the

literature.

The present paper therefore deals in its first chapter with the construction of a
differentiable structure on the quotient of an arbitrary H-manifold by formulating
a sufficient condition for existence, fixing the choices to be made on the way and

investigating the influence of the choices on the structure thus constructed.

First we define various kinds of objects: An equivariant manifold refines the notion
of an H-manifold by letting H lie normally in a compact Lie group G still acting on M.
H works as “dividing group” whereas G works as symmetry group: The orbits, the

slice representations and the strata are taken with respect to H. They as well as the

1cf. e.g. [Hirzebruch /Mayer], [Jinich] or [Bredon)]
2cf. [Lellmann)

3¢f. [Verona], p. 128

“cf. [Bredon], p. 187

Scf. [B6hm] and chapter II
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tubular systems and the quotient structures to be considered later are invariant under
the action of G. The symmetry group of g \M is the quotient G / H.

Equivariant vector spaces are faithful orthogonal representations with no trivial
summand. Their isomorphy classes are called slice types.® Stable sets of slice types
are called slice diagrams. We measure the complexity of a slice diagram by its length.”
The most important examples of a slice diagram is the set of slice types of an equivariant
manifold.

Equivariant vector bundles are differentiable fibre bundles with equivariant vector
spaces as fibres. These are exactly the normal bundles of the strata of our equivariant
manifolds.

The layer next to the objects are the tubular systems: These are compatible families
of tubes of the respective strata, with the compatibility defined recursively. Tubular
systems always exist and each two tubular systems of a fixed object are isotopic.

We are, however, interested mainly in the third layer made up by the quotient struc-
tures. A quotient structure of an equivariant manifold is a structure of a differentiable
manifold on its quotient, subject to certain recursive compatibility conditions. Analo-
gously we would like the quotient of an equivariant vector space or vector bundle to be
again a euclidean vector space and a riemannian vector bundle respectively. the quo-
tient structures of the linear objects “equivariant vector space”, “slice type” and “slice
diagram” are called linearisations as well. Any tubular system or quotient structure
of an equivariant manifold is defined with respect to a tubular system and a quotient

structure of the slice diagram of that manifold.

Theorem I 7.7. Let M be an equivariant manifold, ¢ a tubular system of its slice
diagram A and let 1) be a tubular system of M with respect to ¢. Then there is one

and only one quotient structure of (M, v) lying over any given linearisation of (A, ¢).

This theorem steps from “local” to “global”: (The existence of) a linearisiation of the
local datum “slice diagram” yields (the existence of) a global differentiable structure
on the orbit space. The latter is characterised by the property that the quotients of
the tubes of the strata are tubes of the quotients of the strata.

By passing to isotopy classes one can get rid of the tubular systems in the case of

compact objects:

Theorem I 8.11.

(1) Linearisability is a well defined property of slice diagrams without refering to tubu-
lar systems.

(2) An isotopy class of a linearisation of a slice diagram of a compact equivariant
manifold determines an isotopy class of differentiable structures on the respective

orbit space.

6The kind of slice types and diagrams I use are coarser than those of Janich.
7also called depth or height
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Now what do we know about existence and uniqueness of linearisations? An equiv-
ariant vector space is linearisable iff its unit sphere possesses a quotient structure, such
that this quotient becomes equivariantly diffeomorphic to the standard sphere with an
orthogonal action. Then by conical extension the quotient of the equivariant vector
space is itself a euclidean vector space with an orthogonal action.

In spite of this rather strong condition, linearisability is not just a sporadic phe-
nomenon. In fact, there is an infinity of linearisable slice types of any given length
greater than one.

In 5.10 we explicitely list all linearisations of slice types of length two. In IV 2.8 we
give a linearisation of a non abelian slice type of length four.

In this context at least two questions remain: Does topological “manifoldness” of
the quotient imply the linearisability of an equivariant vector space? And: Can an

equivariant vector space have two or more non isotopic linearisations?

Technically the first chapter is ruled by recursive definitions according to the fol-

lowing scheme:

Vrj_y &—— St;_; «——— Sdi

T

Vbi_; «—— Mf;_{ «—— V1 — St; — Sd;

Vb; —— Mf{; — VI‘H.1

where Vr; denotes the equivariant vector spaces of length [, for example. Defining
quotient structures for Vr;, say, requires quotient structures for equivariant manifolds
of length [ — 1 in addition to quotient structures for slice diagrams of length I —1. One
actually proceeds from Mf;_; to Vr; by conical extension as described earlier.

The symmetry group comes into play when passing from Vr; to Vb;: The symme-
try group of the equivariant vector space is at the same time the structure group of
the equivariant vector bundle. By virtue of this group tubular systems and quotient
structures of the fibre are turned into corresponding objects of the total space. The
recursive nature of both tubular systems and quotient structures appears here in the
guise of nesting of bundles, and their compatibility with the nesting is crucial for the

strata to fit together.
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Passing from Vbyg, k < [, to Mf; involves the tubular systems: An equivariant
manifold is covered by neighbourhoods of its strata. As tubes provide diffeomorphisms
between neighbourhoods in the normal bundles and neighbourhoods in the manifold,
and as the compatibility relations are carefully chosen, the differentiable structure on
the quotient of the manifold can be furnished from the differentiable structures on the

quotients of the normal bundles.

Equivariant vector spaces decompose into prim factors. In view of the second chapter
we improve the definitions of tubular systems and quotient structures to match with
this decompositon. The results of the first chapter remain true when using the new
definitions instead of the old.

Chapter II deals with objects whose slice diagrams are abelian, i.e. each isotropy
group modulo the kernel of the slice representation is abelian. In this case the linearis-
able slice types can be given explicitely, and we can show that there is no difference
between orbit spaces that are topological manifolds and orbit spaces that are differen-

tiable ones.

For abelian slice types we define a real and a 2-primary codimension respectively.
The prime slice types of codimension 0 are the slice types of the standard represen-
tations of S and Z,. In codimension 1 one obtains two series (04)s and (7"),. The
finite products of abelian slice types of codimension 0 or 1 form a slice diagram AP,

the meaning of which becomes clear by the following

Theorem II 5.11. For an equivariant manifold with abelian slice diagram the follow-

ing statements are equivalent:

(1) The orbit space is a topological manifold (with boundary).

(2) The slice diagram is contained in A*P.

(3) The slice diagram is linearisable.

(4) The orbit space admits a structure of a differentiable manifold (with smooth bound-
ary).

The boundary is empty iff all the prime slice types have codimension one.

The equivalence of (1) and (2) translates a topological property of the equivariant
manifold into representation theory. The proof follows from [Bohm] by a close analysis
of the occuring representations. (3) implies (4) by virtue of the first chapter. (2) implies
(3) by constructing a linearisation of A®P; the following diagram gives the idea for

linearising the slice type o,:
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G(a)\C" fa Cx R™? G(a) -z + wa(r;) -9™(|=1)
Tn\(C" = R,o" g Ry x R™71 Tr . 2 lz| g”(]z])

C™ modulo the torus is the cubical corner R,", which is turned into the half space
R, X R®™! by a smoothing g". Apart from the vector |z| of absolute values the orbit

G(a) - z possesses the angle w, ( Iél) as an additional invariant. This angle fits well into

the “complexification” C x R™~! of the half space. To sum up f, is a homeomorphism
between the quotient G(a)\cn and a euclidean vector space.

That the family (f, ), and its 2-primary analogon define in fact a linearisation of A®",
imposes strong conditions on the sequence (¢™),, of smoothings and on the tubular sys-
tems of the slice types involved. To this end we join cubical corner an half space of each
dimension by a family of corners whose angle varies. Then we construct by recursion a
coherent choice of tubular systems for these families of corners, the complex standard
vector spaces and the complexified half spaces. Finally we construct a sequence of

smoothings matching as well with each other as with the tubular systems.

Chapter III exhibits an elaborate example: the complex projective plane with “di-
viding group” complex conjugation and symmetry group SO(3). The orbit space is
isomorphic to the four dimensional sphere, as is mentioned in [Arnold I] and proved in
[Massey], [Kuiper| and [Arnold II], the authors being independent of each other.

Massey considers an action of the dihedral group on S? x S%. The quotients with
respect to the various subgroups form a diagram of coverings — partially branched.
Thereby he finds one of the quotient spaces being homeomorphic to CP? / () as well
as to §*.

Kuiper starts with a veronese-like embedding of CP? into the selfadjoint mappings
of C3. Taking the averidge over the ( )-action leads to an embedding of the quotient
CP? / (7). Algebro-geometric reasoning proves the image of the embedding to be S,
According to Kuiper the isomorphy in question is piecewise linear and therefore even
differentiable. Arnold claims diffeomorphy on the basis of this map, too, while his
arguments are more geometric in nature.

The next theorem states in what way the differentiable structures of Kuiper and
Arnold are intrinsic. Moreover it shows the equivariance of the homeomorphy as con-

jectured by Massey.

Theorem III 2.7. The equivariant manifold CP? possesses one and only one iso-
topy class of quotient structures, and with respect to this the quotient CPZ/(_) is
SO(3)-equivariantly diffeomorphic to the four dimensional standard sphere.
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The set of oriented, normed ellipses that are centered in the origin of a three di-
mensional euclidean vector space V is a model of the complex projective plane P(V¢).
In this model many geometric properties, caused by V¢ being the complexification of
a euclidean vector space, become visable, e.g. does complex conjugation correspond
with the change of orientation. The set of unoriented ellipses is therefore a model of
the orbit space P(Vc) / (). The isomorphy of CP? to the second symmetric power
of CP! used by Massey is constructed by means of the ellipse model and elemental

geometry.

Chapter IV treats the example that marked the starting point for investigating
into the general quotients of chapter I and the special quotient of chapter III as
well: On SU(3) there acts the square of the maximal torus T' of diagonal matrices
by ((:z:,y), g) — zgy~'. The quotient T\SU(3)/T is homeomorphic to S%.

The general setting is examined by the next theorem, it’s first part being an appli-

cation of chapter II:

Theorem IV 1.1. Let T be a maximal torus of a compact connected Lie group K.
Then the quotient T\K/T is a manifold — possibly with boundary —iff K is locally
isomorphic to U(1)* x SU(2)! x SU(3)™ for suitable k,I,m > 0. In this case the quotient
is homeomorphic to I' x (§*)™.

I consider the normaliser of T' Xz, T within the isometries of SU(3) to be the sym-
metry group of the equivariant manifold SU(3). Then the quotient symmetry group is

finite and has exactly one faithful orthogonal representation of dimension five.

Conjecture. The quotient T\SU(3)/T has a distinguished isotopy class of differen-
tiable structures, and with respect to this it is equivariantly diffeomorphic to the four

dimensional standard sphere with an orthogonal action.

Approaching this conjecture we prove:
(1) The quotient T\SU(3) / T possesses a distinguished isotopy class of differentiable
structures.
(2) The quotient is homeomorphic to S*.
(3) The quotient possesses an equivariant topological embedding into R® by invariant

homogeneous polynomials of degree two and three on SU(3).

A geometric understanding of the quotient of SU(3) starts with the graph shown in
figure 25. Its vertices constitute the deepest stratum of the quotient, its open edges
make up the middle one, the main stratum is missing however. The symmetry group of
the graph is —enlarged by a factor Z; — exactly the symmetry group of the quotient.

The two-sided action of T' on SU(3) yields the two-sided action of the maximal
2-primary torus Q on SO(3) by passing to the fixed points of the complex conjuga-
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Figure 25: skeleton of T\SU(3)/T and Q\SO(3)/Q respectively

tion. Its quotient lies embedded in the quotient of SU(3) and has already the same
graph formed of the lower strata. The quotient Q\SO(3) / Q) is equivariantly diffeo-
morphic to §3. By the homeomorphy (2) Q\SO(?))/Q becomes the equator of S*;
the embedding (3) maps Q\SO(3)/Q into a hyperplane. A suitable triangulation of
SO(3) makes the quotient map rather comprehensible, and the isomorphy with S® is
explicitely constructed.

Utilising the graph made up by the lower strata Prof. Dr. Matthias Kreck first
proved the homeomorphy of T\SU(?)) /T to S* by means of algebraic topology. Here

we sketch an elementary proof with the help of complex conjugation on the quotient:

f: (‘)\\(T\SU(3)/T) _ R*

[A] —— (@ij@;)i <2

is a topological embedding: the orbit of a matrix is characterised by the absolute values
of its entries. The image of f is homeomorphic to D*, its boundary is just the image of
Q\SO(3)/Q. As the latter is the fixed point set of complex conjugation, T\SU(3)/T

is homeomorphic to D* Ugs D*.

I like to thank Prof. Dr. Matthias Kreck for patiently supervising this project. He as
well as Dr. Rainer Jung have always welcomed me in Mainz. I had the opportunity to
discuss several questions with people at the Mathematisches Institut of the university
of Bonn and at the Max-Plank-Institut fiir Mathematik. Tillmann Klingholz filled me
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with enthusiasm for TEX while sharply criticizing my style and my layout. Susanne
Dahlmann worked persistently towards the clarity of my seminar talk. Dorthe Herr-
mann did the proof-reading of a large part of the manuscript and brought me back
from the wrong track in some respects. I thank them all very much. By their listening,
their advices and by some discussions when they were necessary, they took part in the

completion of this work.



	Title
	Abstract
	Contents
	Introduction



