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Introduction by the Organisers

The workshop Linear and Nonlinear Eigenproblems for PDEs, organised by An-
drew Knyazev (University of Colorado, Denver), Volker Mehrmann (Technical
University, Berlin), John E. Osborn (University of Maryland, College Park) and
Jinchao Xu (Pennsylvania State University, University Park) was held August 9th
– August 15th, 2009. This meeting was well attended with over 40 participants
with broad geographic representation from all continents.

Numerical solution of linear and nonlinear eigenvalue problems for partial differ-
ential equations is an important task in many application areas such as:

• dynamics of electromagnetic fields;
• electronic structure calculations;
• band structure calculations in photonic crystals;
• vibration analysis of heterogeneous material structures;
• particle accelerator simulations;
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• vibrations and buckling in mechanics, structural dynamics;
• neutron flow simulations in nuclear reactors.

It involves research in several different areas of mathematics ranging from matrix
computation to modern numerical treatment of partial differential equations.
Major new research developments in the area of PDE eigenvalue problems that
have taken place in recent years include the following:

• meshless and generalized finite element method approximation methods;
• adaptive finite element methods;
• methods for polynomial and other nonlinear eigenvalue problems;
• a priori and a posteriori eigenvalue and eigenvector error estimation;
• convergence theory for preconditioned and inexact eigensolvers;
• multigrid, domain decomposition and incomplete factorization based pre-
conditioning for eigenproblems;

• public software implementing efficient eigensolvers for parallel computers.

Furthermore, important progress has been made for some of the challenging prob-
lems in this area, e.g., efficient solvers have been developed for some classes of
non-selfadjoint and non-linear eigenvalue problems. On the other hand, many
difficult questions remain open even for linear eigenvalue problems as practically
interesting engineering applications demand high accuracy of the models, which
often leads to ill-conditioned problems of enormous sizes.

We feel that the workshop summed up the recent developments in the different
communities in this area and indicated new and fruitful directions. The purpose of
this meeting was to bring together researchers with diverse background in matrix
computations, numerical methods for PDEs, and relevant application areas, to
present the state of the art in the area, and to exchange ideas and approaches for
further development.

Senior investigators as well as a significant number of young researchers partic-
ipated the workshop which format was ideal to stimulate research in this increas-
ingly important and rapidly developing area.
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Abstracts

Eigenvalue Tensor Calculation

Wolfgang Hackbusch

This contribution is about the use of the tensor calculus for the computation of
eigenvalues. We consider eigenvalue problems Lu = λu for a second order elliptic
differential operator L in a product domain Ω, e.g., Ω = (0, 1)3, more generally
I1 × I2 × I3 (Ij intervals) or Ω = R3. The boundary conditions may be Dirichlet
homogeneous values. After discretisation (Galerkin, difference method) the system
matrix is denoted by Lh and the eigenvalue problem becomes Lhuh = λhuh or
Lhuh = λhMhuh (Mh: mass matrix).

The true aim of the consideration is the solution of DFT-like formulations in
Quantum Chemistry, e.g., the Hartree-Fock or Kohn-Sham equations. The corre-
sponding eigenvalue problem is of the form

Hϕα = λαϕα (α = 1, . . . , ℓ) in R
3

with the operator depending on the eigenfunctions: H = H(ϕ1, . . . , ϕℓ).
For simplicity, we assume Ω = (0, 1)3 and discretise by a regular grid with n

points per direction. The arising dimension n3 – e.g. for n = 1000 – becomes too

large for standard eigen solvers. Instead we want to use the tensor calculus. Rn3

is the tensor product Rn ⊗Rn ⊗Rn, hence grid functions from Rn3

have the form

(1) u =

r∑

ρ=1

uρ,1 ⊗ uρ,2 ⊗ uρ,3 with uρ,j ∈ R
n.

The minimal r in (1) is the tensor rank. Fixing r, we consider the set Tr of
tensors prepresentable by (1). In that case, r is called the representation rank of
u ∈ Tr. The obvious advantage is the storage cost of 3rn. If r is moderate (say
r ≤ 50), a tensor with large n is easy to handle.

A first argument why the tensor format is fitting to eigenvalue problems, follow
from a separable differential operator L = L1 + L2 + L3 with

Lj =
∂

∂xj
aj(xj)

∂

∂xj
+ bj(xj)

∂

∂xj
+ cj(xj).

Then all eigenfunctions u(x1, x2, x3) = uν1,1(x1)u
ν2,2(x2)u

ν3,3(x3) have tensor for-
mat with tensor rank r = 1, where uν,j(xj) is the νth eigenfunction of the 1D eigen-
value problem Lju

ν,j = λν,ju
ν,j with uν,j |∂[0,1] = 0. These properties are inherited

by the discrete eigenvalue problem, if e.g. the Galerkin method is used with a
tensor basis functions, i.e., bi(x1, x2, x3) = bi1(x1)bi2(x2)bi3(x3) for i = (i1, i2, i3) .

In the general (non-separable) case, we have two different sources of errors. The
discretisation error measures the difference between the eigenfunction u from the

continuous level and the eigenvector uh of the discretisation. Considering uh ∈ Rn3

as a tensor (with possible high rank), we need a tensor approximation uh,r ∈ Tr
of representation rank r, which introduces a second approximation error. While



250 Oberwolfach Report 37

the discretisation error is well-studied, the discussion of the error for the rank r
tensor approximation is new.

The tensor calculus can be used to perform matrix-vector multiplications ef-
ficiently. Let the system matrix Lh be of Kronecker tensor format, i.e., M =∑m

ν=1Mν,1 ⊗Mν,2 ⊗Mν,3 with Mρ,j ∈ Rn×n. Then a multiplication Mu with u
from (1) reduces to 1D products Mν,juρ,j (1 ≤ j ≤ 3). However, as other opera-
tions the resulting number of terms (representation rank) is increased. Therefore,
it is essential that after performing the operations exactly, a suitable truncation Tr
from rank r′ to r is applied. In general, when u 7→ Φu describes any iteration step,
is will be replaced by the truncated iteration u 7→ Tr (Φu) . If the power iteration
is to be preconditioned, one should choose a positive definite M0 = A of the form
A = A1 ⊗ I ⊗ I + I ⊗A2 ⊗ I + I ⊗ I ⊗A3. Then the approximation

A−1 ≈
∑k

ν=1
ων exp(ανA1)⊗ exp(ανA2)⊗ exp(ανA3)

has exponential accuracy w.r.t. k (cf. [3]).
An alternative to the representation (1) of tensors from V = V 1 ⊗ V 2 ⊗ V 3

is the subspace tensor representation, where for suitable r-dimensional subspaces
U j ⊂ V j (dimU j = r) one approximates v ∈ V by ṽ ∈ U := U1 ⊗U2 ⊗U3. Fixing
(orthonormal) bases (bν,j)ν=1,...,r of U j , the representation of ṽ is of the form

(2) u =
∑

ρ∈{1,...,r}3
aρbρ1,1 ⊗ bρ2,2 ⊗ bρ3,3 ∈ U.

To estimate the tensor approximation error, the differential operator Lu :=
−div(A gradu) + b gradu + c u with analytic coefficients has been considered in
the paper [5], which is based on [8]. It turns out that the analytic eigenfunction
can be approximated by polynomials with exponential accuracy w.r.t. the degree.
Hence U in (2) uses U j being univariate polynomials of degree r − 1.

In the case of the Hartree-Fock equation H ψν(y) = λν ψν(y) with H = −∆+
Vnucl + VHartree +Kxc, the potential Vnucl of the nuclii is singular at the location
of the atoms. Hence, the coefficients and consequently the solution is not globally
analytic. Nevertheless, tensor approximations work well not only for the eigen-

functions ψν , but also for the electron density ρ = 2
∑N/2

ν=1 ψ
2
ν , which appears in

the Hartree potential VHartree(x) =
∫ ρ(y)

|x−y| dy. This is demonstrated by numerical

examples in [9].
As mentioned above, the truncation to a certain rank (either in the format (1)

or (2)) is essential. Unfortunately, in both cases the truncation is a complicated
nonlinear iteration which may converge to a local but not global optimum (see [1],
[2], [7]). To overcome these difficulties, one may replace the tensor formats (1) or
(2) but another one which also allows efficient operations and additionally a fast
truncation. Such a new tensor format is described in [6]. Details of this format
are given in the lecture of L. Grasedyck [4].
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Hierarchical Singular Value Decomposition of Tensors

Lars Grasedyck

We define the hierarchical singular value decomposition (SVD) for tensors of order
d ≥ 2. This hierarchical SVD has properties like the matrix SVD (and collapses
to the SVD in d = 2), and we prove these. In particular, one can find low rank
(almost) best approximations in a hierarchical format (H-Tucker) which requires
only O((d − 1)k3 + dnk) data, where d is the order of the tensor, n the size of
the modes and k the rank. The H-Tucker format is a specialization of the Tucker
format and it contains as a special case all (canonical) rank k tensors. Based
on this new concept of a hierarchical SVD we present algorithms for hierarchical
tensor calculations allowing for a rigorous error analysis. The complexity of the
truncation (finding lower rank approximations to hierarchical rank k tensors) is
in O((d − 1)k4 + dnk2) and the attainable accuracy is just 2–3 digits less than
machine precision.

Let A ∈ Rn1×···×nd be an order d tensor. The hierarchical Tucker format is a
multilevel variant of the Tucker format — multilevel in terms of the order of the
tensor. In order to define the format we have to introduce a hierarchy among the
modes {1, . . . , d}.

(Dimension tree) A dimension tree TI for dimension d ∈ N is a tree with
root {1, . . . , d} and depth p = ⌈log2(d)⌉ := min{i ∈ N0 | i ≥ log2(d)} such that
each node t ∈ Td is either

(1) a leaf and singleton t = {µ} on level ℓ ∈ {p− 1, p} or
(2) the disjoint union of two successors S(t) = {s1, s2}: t = s1 ∪̇ s2.
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The level ℓ of the tree is defined as the set of all nodes having a distance of exactly
ℓ to the root, cf. Figure 1. We denote the level ℓ of the tree by

T ℓ
I := {t ∈ TI | level(t) = ℓ}.

The set of leaves of the tree is denoted by L(TI) and the set of interior (non-leaf)
nodes is denoted by I(TI). A node of the tree is a so-called mode cluster.

{1,...,6}

{4,5,6}

{1,2,3}

{5,6}

{4}

{6}

{5}

{1}

{2,3}
{2}

{3}

0 3210321Level:

22(625)

22(25)

22(25)

22(15625)

22(25)

22(625)
22(25)

22(25)

Figure 1. Left: A dimension tree for d = 6. Right: A hierarchi-
cal SVD for tensor with respect to another dimension tree.

For each mode cluster t of the dimension tree we define the matricization by
introducing the complementary cluster t′ := {1, . . . , d} \ t,

It :=
⊗

µ∈t

Iµ, It′ :=
⊗

µ∈t′

Iµ,

and the corresponding t-matricization

Mt : R
I → R

It×It′ , (Mt(A))(iµ)µ∈t,(iµ)µ∈t′
:= A(i1,...,id),

where the special case is M∅(A) := M{1,...,d}(A) := A. We use the short notation

A(t) := Mt(A).
Now we can define the set of hierarchical (H-) Tucker tensors [3, 4]

H-Tucker((kt)t∈TI
) := {A ∈ R

I | ∀t ∈ TI : rank(A(t)) ≤ kt}
and the corresponding hierarchical SVD by the SVDs of the nodes in the tree, cf.
Figure 1. This set contains all tensors of canonical rank k for kt ≡ k, it is thus a
rather rich manifold, nonetheless it allows a fast arithmetic (truncation to smaller
rank) and an efficient storage by exploiting a nested (hierarchical) structure among
the matricizations A(t). It avoids the shortcomings of the canonical format [2] and
has the same nice properties as the Tucker format [1].

(Theorem)[4] Let A ∈ H-Tucker((kt)t∈TI
), kt ≡ k and let nj ≡ n. Then the

storage complexity for A is in O(dk3 + dnk).

Let Ut denote the matrix that contains as columns the first k̃t left singular
vectors of A(t) (corresponding to the largest singular values), and define the pro-
jections πt(A) := M−1

t (UtU
T
t A

(t)).
(Theorem)[4] Let A ∈ H-Tucker((kt)t∈TI

), kt ≡ k and let nj ≡ n. Define
AH :=

∏
t∈TI

πtA. Then
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(1) AH ∈ H-Tucker((k̃t)t∈TI
)

(2) ‖A−AH‖ ≤
√
2d− 3minB∈H-Tucker((k̃t)t∈TI

) ‖A−B‖
(3) AH can be computed in O(dk4 + dnk2)
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Shift-Invert Iteration for Pure Imaginary Eigenvalues for Large Sparse
Matrices

Alastair Spence

(joint work with Karl Meerbergen)

In this talk we discuss a numerical procedure for the determination of the smallest
λ for which the large, sparse eigenvalue problem

(1) (A+ λB)x = µMx,

has a pair of pure imaginary µ’s. Here λ is a physical parameter and µ is the
eigenvalue of the generalised eigenvalue problem (1).

This work is motivated by the bifurcation analysis of the non-linear dynamical
system

du

dt
= f(u, λ) , u(0) = u0,

where f is an operator in (Rn,R) 7→ Rn with n large. Such analysis includes the
computation of bifurcation diagrams, and more particularly, the stability analysis
and detection of Hopf bifurcations. In many situations, for example, in nonlinear
finite element discretizations, we have an dynamical system of the form

M
du

dt
= f(u, λ),

where M is a large sparse symmetric positive definite mass matrix. In the case of
steady state solutions, i.e. du/dt = 0, often the values of λ are sought for which
the solution u loses stability. In a linearized stability analysis, the steady state is
said to be stable when the eigenvalues µ of

(2) J(λ)x = µMx,

have strictly negative real parts, with J(λ) denoting the Jacobian matrix evalu-

ated at the steady state u(λ), namely, J(λ) = ∂f
∂u (u(λ), λ). Values of λ where
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eigenvalues of (2) cross the imaginary axis indicate a transition from a stable to
unstable regime. When stability is lost due to a real eigenvalue µ passing through
zero there are many techniques available to determine the critical value of λ. In
contrast, at a Hopf bifurcation on a path of stable steady states, (2) has two pure
imaginary eigenvalues and their detection is a particularly difficult task for large
scale dynamical systems. On the other hand, if close starting values for λ and µ
are known then there are good methods, usually based on Newton’s Method, for
their accurate determination. The contribution of this paper is the determination
of good starting values with which to initiate the Hopf calculation.

Perhaps the most straightforward method to detect Hopf points is to monitor
the right-most eigenvalues of (2) for a discrete set of λ’s. This requires the solu-
tion of an eigenvalue problem for each selected λ, which can be very expensive,
especially when the system size is large. The next most obvious method is the
shift-invert Arnoldi method with zero shift. This is an attractive approach since a
matrix factorization of J(λ) may well be available from the steady state computa-
tion. All these methods are quite reliable for computing eigenvalues near a point
or target, but sometimes fail to compute the right-most eigenvalue. This is likely
to be the case when there are many eigenvalues lying near zero but the eigenvalues
that cross the Imaginary axis have large imaginary part.

For small scale problems Guckenheimer and co-workers (SINUM, 34 (1997) pp1-
21) introduced a novel technique to detect Hopf bifurcations based on the use of
the bialternate product of J(λ), defined as (J(λ) ⊗ I + I ⊗ J(λ))/2, which is an
n2 × n2 matrix that has a pair of zero eigenvalues when J(λ) has a pair of pure
imaginary eigenvalues. This construction forms the first theoretical step in our
method, but we emphasise that we do not compute with the Kronecker product
forms.

In this talk we build on Guckenheimer’s idea, and develop a method applicable
to large scale problems. We use an inverse iteration approach to solve the resulting
Lyapunov equations.

We consider the situation where J(λ) has the form

J(λ) = (A+ λB) .

In the bifurcation setting, A and B ∈ Rn×n arise from a linearization of f(u, λ)
as follows: Assume that u(0) is a known steady state at λ = 0, then J(0) is
known and J(λ) ≈ J(0) + λJ ′(0), which we write as A + λB. Here, A and
B are usually nonsymmetric matrices and B can be singular. In this talk, we
assume the following situation: λ = 0 corresponds to a stable steady state solution,
i.e. all eigenvalues of Ax = µMx lie in the stable half plane. The goal is to
compute the smallest λ for which the eigenvalue problem (1) has pure imaginary
µ’s. Generically, the µ’s will be continuous functions of λ and the first λ for
which there are µ’s on the imaginary axis (including the case when µ = 0), will
approximate the value of λ that corresponds to a transition from a stable to
unstable steady state, or to a Hopf point.
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First, note that the bialternate product of (A+λB) has the form (dropping the
factor of 1

2 )

(3) (A+ λB)⊗M +M ⊗ (A+ λB).

If (1) has pure imaginary eigenvalues then has a double eigenvalue zero. This
translates into the following n2 × n2 linear eigenvalue problem

(4) (A⊗M +M ⊗A)z + λ(B ⊗M +M ⊗B)z = 0 ,

whose solution gives the values of λ for which (1) has pure imaginary eigenvalues
µ. Although this is a nice mathematical property, it should only be used in this
form for problems of small size. To produce a method that is applicable to large
scale problems we exploit the well-known equivalence between equations involving
the Kronecker product and Lyapunov equations. This shows that the eigenvalue
problem (4) is equivalent to the eigenvalue problem

(5) MZAT +AZMT + λ(MZBT +BZMT ) = 0 ,

where vec(Z) = z, with z as in (4). Here Z is an unknown n×n matrix, which we
also call an ‘eigenvector’ of (5). A new element in this talk is our discussion of the
rank of Z and its symmetry properties. A clear understanding of these two aspects
turns out to be key in obtaining an efficient algorithm for large scale problems.

Numerical examples, including two physical applications, support the theory in
this paper.

Adaptive FE eigenvalue approximation (with application to
hydrodynamic stability)

Rolf Rannacher

(joint work with Vincent Heuveline and Antje Westenberger, Winnifried Wollner)

This talk presents an adaptive finite element method for the solution of eigenvalue
problems associated with the linearized stability analysis of nonlinear operators in
the context of hydrodynamic stability theory. The general framework is the Dual
Weighted Residual (DWR) method for local mesh adaptation which is driven by
residual-based and sensitivity-controlled a posteriori information (see Becker &
Rannacher [6, 7]). The basic idea is to embed the eigenvalue approximation into
the general framework of Galerkin methods for nonlinear variational equations for
which the DWR method is already well developed (see Rannacher [17] and the
monograph Bangerth & Rannacher [2]). The evaluation of these error representa-
tions results in a posteriori error bounds for approximate eigenvalues reflecting the
errors by discretization of the eigenvalue problem as well as those by linearization
about an only approximately known base solution. From these error estimates
local error indicators are derived by which economical meshes can be constructed.
Some parts of the underlying theory are developed within a more abstract setting
suggesting the application to other kinds of nonlinear problems.
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On a bounded domain Ω ⊂ R
d with d = 2 or d = 3, we consider elliptic

eigenvalue problems of increasing complexity, such as symmetric diffusion problems

−∆v = λv, in Ω, v|∂Ω = 0,(1)

nonsymmetric convection-diffusion problems

−∆v + b · ∇v = λv, in Ω, v|∂Ω = 0,(2)

and eigenvalue problems in hydrodynamic stability theory,

− ν∆v + v̂ · ∇v + v · ∇v̂ +∇q = λv, ∇ · v = 0, in Ω,

v|Γrigid
= 0, v|Γin

= 0, ν∂nv − pn|Γout
= 0.

(3)

Here, û := {v̂, p̂} is a stationary “base flow”, that is a stationary solution of the
Navier-Stokes equations

− ν∆v + v · ∇v +∇p = f, ∇ · v = 0, in Ω,

v|Γrigid
= 0, v|Γin

= vin, ν∂nv − pn|Γout
= 0,

(4)

where v is the velocity vector field of the flow, p is its hydrostatic pressure, ν is
the kinematic viscosity (density ρ ≡ 1), and f is a prescribed volume force. The
goal is to investigate the stability of the base flow {v̂, p̂} under small perturbations,
which leads us to consider the eigenvalue problem (3). If an eigenvalue of (3) has
Reλ < 0 , the base flow is unstable, otherwise it is said to by “linearly stable”.
That means that the solution of the linearized nonstationary perturbation problem

∂tw − ν∆w + v̂ · ∇w + w · ∇v̂ +∇q = 0, ∇ · w = 0, in Ω,(5)

corresponding to an initial perturbation w|t=0 = w0 satisfies a bound of the form

sup
t≥0

‖w(t)‖ ≤ A‖w0‖,(6)

for some constant A ≥ 1 , where ‖ · ‖ denotes the L2-norm over Ω and (·, ·)
the corresponding inner product. However, linear stability does not guarantee
full nonlinear stability due to effects caused by the non-normality of problem (3)
making the constant A large (see Landahl [13] and the monograph Trefethen &
Embree [18]).

The finite element discretization of these eigenvalue problems is based on varia-
tional formulations. It uses finite element spaces Vh consisting of piecewise poly-
nomial functions on certain decompositions Th of the domain Ω̄ into cells T ∈ Th

(triangle, quadrilateral, etc.) with diameter hT := diam(T ) . Our primal goal is
to derive computable a posteriori estimates for the error λ − λh in terms of the
“cell residuals” of the computed approximations v̂h and {vh, λh} . For symmetric
eigenvalue problems of the kind (1) a posteriori error estimates of this type have
been derived by Nystedt [15], Larson [14], and Verfürth [19]. Their proofs largely
exploit symmetry and also require the H2-regularity of the problem which excludes
domains with reentrant corners. In Heuveline & Rannacher [10, 11] nonsymmet-
ric eigenvalue problems of the kind (2) have been treated by employing duality
techniques from optimal control theory. In this approach the central idea is to
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simultaneously consider the approximation of the the “primal” eigenvalue prob-
lem Au = λu and its associated “dual” analogue A∗u∗ = λ̄u∗ . The combined
problem is embedded into the general optimal-control framework of Galerkin ap-
proximations of nonlinear variational equations developed in Becker & Rannacher
[6, 7]. This results in an a posteriori error estimate of the form

|λ− λh| ≈
∑

T∈Th

h2T

{
ρ̂T (ûh)ω̂

∗
T + ρ̂∗T (û

∗
h)ω̂T

+ ρT (uh, λh)ω
∗
T + ρ∗T (u

∗
h, λ̄h)ωT

}
,

(7)

involving the cell residuals ρ̂T , ρ̂∗T , and ρT , ρ∗T of the computed primal and
dual base solutions ûh , û

∗
h , and eigenpairs {uh, λh} , {u∗h, λ̄h} , and correspond-

ing local weights (sensitivity factors) ω̂T , ω̂
∗
T and ωT , ω

∗
T . These weights, though

depending on the unknown “exact” solutions, can be cheaply approximated from
the computed discrete solutions by local postprocessing. The error estimate (7)
accomplishes simultaneous control of the error in the linearization, v̂ − v̂h , and
the error in the resulting eigenvalues, λ − λh . The cellwise error indicators can
then guide the mesh refinement process. Further, we devise a simple computa-
tional criterion based on the inner products (vh, v

∗
h) which can detect possible

instability caused by non-normality effects. The practical features of this method
are illustrated for several model situations including a scalar convection-diffusion
problem and a problem arising in stationary optimal flow control, drag minimiza-
tion by stationary boundary control (see Becker [3, 4] and Becker, Heuveline &
Rannacher [5]).

We note that the approach of simultaneously considering the primal and dual
eigenvalue problems is also crucial for constructing efficient multigrid solvers for
the discrete problems. This has been successfully exploited for nonsymmetric
elliptic eigenvalue problems in Heuveline & Bertsch [9].

The a priori error analysis for the nonsymmetric eigenvalue problem is well
developed in the literature, Bramble & Osborn [8], Osborn [16], Babuska & Osborn
[1], and the literature cited therein). Particularly to mention is Osborn [16], where
the eigenvalue problem of the linearized Navier-Stokes equations is considered,
though neglecting the additional error due to the approximative linearization.
These studies usually employ the heavy machinery of resolvent integral calculus as
described in Kato [12]. The a posteriori error analysis only needs arguments from
elementary calculus since it is based on the assumption that the approximation is
sufficiently accurate on the considered meshes. The justification of this assumption
is supplied by the a priori error analysis.
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Nonconforming Maxwell Eigensolvers

Susanne C. Brenner

(joint work with Jintao Cui, Fengyan Li, Jiangguo Liu and Li-yeng Sung)

Let Ω ⊂ R2 be a bounded polygonal domain. We consider three nonconform-
ing eigensolvers for the following Maxwell eigenproblem with perfectly conduct-
ing boundary condition: Find λ ∈ R such that there exists a nontrivial u ∈
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H0(curl; Ω) ∩H(div0; Ω) satisfying

(∇× u,∇× v) = λ(u,v) ∀v ∈ H0(curl; Ω) ∩H(div0; Ω).

Let c1, . . . , cL be the corners of Ω and ωℓ be the interior angle at cℓ. We use a
triangulation Th of Ω with the property that hT ≈ Φµ(T ), where the weight Φµ(T )
is defined by

Φµ(T ) = ΠL
ℓ=1|cℓ − cT |µℓ ,

and the grading parameters µ1, . . . , µL are chosen according to

µℓ = 1 if ω
ℓ
≤ π

2

µℓ ≤
π

2ω
ℓ

if ω
ℓ
>
π

2

Let V1,h be the space of Crouzeix-Raviart locally divergence-free weakly con-
tinuous P1 vector fields associated with Th whose tangential components vanish at
the midpoints of the boundary edges. The first eigensolver computes λh ∈ R such
that there exists a nontrivial uh ∈ V1,h satisfying

ah(uh,v) = λh(uh,v) ∀v ∈ V1,h,

where

ah(w,v) =
∑

T∈Th

∫

T

(∇×w)(∇× v)dx +
∑

e∈Eh

[Φµ(e)]
2

|e|

∫

e

[[n×w]] [[n × v]] ds

+
∑

e∈Ei
h

[Φµ(e)]
2

|e|

∫

e

[[n ·w]][[n · v]]ds,

Eh (resp. E i
h) is the set of edges (resp. interior edges) of Th, |e| denotes the length

of the edge e, n is a unit normal of e, and [[n× v]] (resp. [[n ·v]]) denotes the jump
of the tangential (resp. normal) component of v. The weight Φµ(e) is defined by

Φµ(e) = ΠL
ℓ=1|cℓ −me|1−µℓ ,

where me is the midpoint of e.
For domains that are not simply connected, the Crouzeix-Raviart space does

not have a completely local basis. This difficulty can be avoided by replacing
V1,h by V2,h, the space of weakly continuous P1 vector fields, without the local
divergence-free condition. The second eigensolver computes λh ∈ R such that
there exists a nontrivial uh ∈ V2,h satisfying

a2,h(uh,v) = λh(uh,v) ∀v ∈ V2,h,

where

a2,h(w,v) = a1,h(w,v) +
∑

T∈Th

h−2
T

∫

T

(∇ ·w)(∇ · v)dx.

For the third eigensolver we take V3,h to be the space of discontinuous locally
divergence-free P1 vector fields and compute λh ∈ R such that there exists a
nontrivial uh ∈ V3,h satisfying

a3,h(uh,v) = λh(uh,v) ∀v ∈ V3,h,
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where

a3,h(w,v) = a1,h(w,v) + h−2
∑

e∈Eh

1

|e|

∫

e

(
Π0

e[[n×w]]
)(
Π0

e[[n× v]]
)
ds

+ h−2
∑

e∈Ei
h

1

|e|

∫

e

(
Π0

e[[n ·w]]
)(
Π0

e[[n · v]]
)
ds,

and Πe is the orthogonal projection from L2(e) onto P0(e). This eigensolver can
be implemented on nonconforming meshes since the vector fields in V3,h are dis-
continuous.

The analysis of the eigensolvers are based on the L2 error estimates for the
corresponding nonconforming methods for the source problem, which imply that
the solution operators of the discrete problems converge in the L2 operator norm
to the solution operator of the continuous problem. Since the space H0(curl; Ω)∩
H(div0; Ω) is compactly embedded in [L2(Ω)]

2, the convergence of the eigensolvers
then follows immediately from the classical theory of spectral approximation. In
particular, no spurious eigenvalues are generated by any of these eigensolvers.

We also present preliminary 3D numerical results for the unit cube showing
that the discrete eigenvalues are well separated with the correct multiplicity.

Details for the eigensolvers and related results for the source problem can be
found in the papers listed in the references.
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An eigenvalue problem coming from the computation of resonances in
open systems using a perfectly matched layer

Joseph E. Pasciak

(joint work with Seungil Kim)

In this talk, we consider the computation of resonance values in open systems
using approximations coming from the PML (perfectly matched layer) technique.
Problems involving resonances in open systems result from many applications, in-
cluding the modeling of slat and flap noise from an airplane wing, gravitational
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waves in astrophysics, and quantum mechanical systems. We consider the approx-
imation of resonances in the frequency domain.

As a model problem, we consider a resonance problem in three dimensional
space which results from a compactly supported perturbation of the Laplacian,
i.e.,

Lu = −∆u+ L1u

where L1 is symmetric and lives on a bounded domain Ω ⊂ R
3. We then seek k

such that there are non-trivial “eigenfunctions” ψ satisfying

Lψ = k2ψ.

The function ψ is required to satisfy an outgoing condition corresponding to the
wave number k. A resonance value k corresponds to an improper eigenvalue prob-
lem as the corresponding eigenvector grows exponentially. This exponential growth
makes the problem difficult to formulate and even more difficult to approximate
numerically.

The PML technique was introduced by Bérenger for scattering problems [3, 4].
The idea was to surround the area of computational interest by an absorbing
media (layer) which was perfectly free of reflection. Bérenger’s original formulation
involved splitting the equations in the absorbing layer. Subsequent formulations
avoid this splitting and often can be interpreted as a complex stretching, c.f.,
[8]. A properly devised complex stretching (or change of variable) preserves the
solution inside the layer while introducing exponential decay at infinity. Thus,
it is natural to truncate the problem to a finite domain, introduce a convenient
boundary condition on the artificial boundary and apply the finite element method.
This is a very successful technique which has been investigated both theoretically
and computationally.

For scattering problems, one traditionally introduces a PML stretching which
depends on the wave number yielding wave number independent decay [14]. In
contrast, for PML resonance problems, we use a stretching independent of the
wave number. This results in wave number dependent decay. This is important
in that when this decay is stronger than the exponential growth of the resonance
eigenfunction, this eigenfunction is transformed into a proper eigenfunction for
the PML equation (still on the infinite domain). In fact, the resulting PML eigen-
function still has residue exponential decay. Because of this decay, it is natural to
consider truncating to a finite domain and subsequently applying the finite element
method. The goal of this talk is to study the eigenvalue behavior when the eigen-
values of the (infinite) PML problem are approximated by those corresponding to
a finite element method on a truncated computational domain.

The application of PML for the computation of resonances is not new. It turns
out that PML is related to what is called “spectral deformation theory” developed
by Aguilar, Balslev, Combes and Simon [1, 2, 11, 17]. This theory shows that
the PML eigenvalues for the infinite domain problem coincide with the resonance
values of the original problem for rather general scaling schemes. The experimental
behavior of truncated PML approximations to resonances in open systems was
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investigated in [9, 10]. Our paper provides the first theoretical analysis of the
convergence of the truncated PML eigenvalue approximation.

In many applications, the convergence of approximate eigenvalues is the result
of classical perturbation theory (cf. [12]). Indeed, one is able to conclude basic
eigenvalue convergence provided that one can show that approximate operators
converge in norm to the appropriate continuous operator. The PML eigenvalue
problem is interesting as norm convergence does not hold in this case and so
eigenvalue convergence has to be proved in a more basic way.

The convergence of the eigenvalues obtained by finite element discretization has
had a long history of research. Osborn [16] and Bramble-Osborn [7] consider the
case of second order elliptic problems on bounded domains. In this case, the so-
lution operator is compact and it is possible to prove convergence in norm of the
discrete approximation. More recent work has been done on the Maxwell eigen-
value problem [5, 6, 13, 15]. This problem is more difficult than the uniformly
elliptic problem mentioned above due to a non-compact inverse however, in this
case, the only trouble is due to gradient fields and results in a non-discrete spec-
trum consisting of only one point, the origin. In contrast, the PML problem is
posed on an infinite domain and its inverse has essential spectrum while the inverse
of the truncated PML problem is compact. Accordingly, there cannot be norm
convergence and the analysis of the convergence of eigenvalues/eigenvector must
proceed in a non-standard fashion. Of course, the critical property here is the
decay of the approximated eigenfunctions and it is this property which is central
to our analysis.

The question of spurious eigenvalues is delicate. First of all, numerical methods
at any level of discretization usually generate some numerical eigenvalues which
have nothing to do with the actual eigenvalues. For example, high frequency eigen-
vector components in a Galerkin approximation to say the Dirichlet problem on a
bounded domain exhibit little eigenvalue accuracy. Fortunately, the correspond-
ing eigenvalues remain far away from the lower eigenvalues which have the desired
convergence. Thus, the goal is to have a method where the eigenvalues of interest
are approximated well and can be easily identified from the extraneous numerical
ones.

The PML resonance case is much more complicated. Computational eigenvalues
not related to the resonance values result from the essential spectrum associated
with the infinite domain PML problem, the domain truncation, the mesh size
and the placement of the PML layer. At least in the model problem which we
are considering, the location of the essential spectrum is apriori known so the
numerical eigenvalues associated with it are easy to identify. Other “spurious
like” eigenvalues can be moved away by changing the layer placement, truncation
domain size and mesh parameter. Our theorems guarantee convergence at the
resonance values provided that the mesh parameter is sufficiently small and the
computational domain is sufficiently large. How to choose all of these parameters
in such a way to guarantee that the resonances of interest in an actual application
have been located remains a difficult question.
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Quasi-Optimal Convergence and Computational Complexity of the
Adaptive Finite Element Method for Symmetric Elliptic Eigenvalue

Problems

Joscha Gedicke

(joint work with Carsten Carstensen)

The eigenvalue problems for second order elliptic boundary value problems involve
the discretisation error of some adaptive finite element method as well as the error
left from some iterative solver for the algebraic eigenvalue problem. This talk
presents the first adaptive finite element eigenvalue solver (AFEMES) of overall
quasi-optimal complexity.
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The quasi-optimal convergence and computational complexity of the adaptive
finite element method (AFEM) for the source problem has recently been estab-
lished [3, 11]. Convergence of the AFEM for the symmetric eigenvalue problem has
been proven in [2, 6, 7, 10]. In [6] the inner node property and an extra refinement
of oscillations is needed. Convergence for more general eigenvalue problems with
possibly jumping coefficients and without the inner node property has been derived
in [7]. In [2] a convergence proof for a reduced edge residual estimator without
oscillations is given. These works on convergence as well as on quasi-optimal con-
vergence [5] of the AFEM for the eigenvalue problem do assume unrealistically
the exact knowledge of algebraic eigenpairs. While a second optimality result for
linear symmetric operator eigenvalue problems [4] is based on coarsening. Assum-
ing a saturation assumption, [8, 9] present combined adaptive finite element and
linear algebra algorithms.

In this talk the quasi-optimal convergence for the simple Laplace eigenproblem
is first shown for exact algebraic eigenvalue solutions without using the inner node
property or any oscillations: Suppose that (λℓ, uℓ) is a discrete eigenpair to the
continuous eigenpair (λ, u). Let u ∈ As, As denotes an approximation space,
and (Tℓ)ℓ be a sequence of nested regular triangulations. Then (λℓ, uℓ) converges
quasi-optimal,

|λ− λℓ|+ |||u− uℓ|||2 . (|Tℓ| − |T0|)−2s.

The notation a . b abbreviates the inequality a ≤ Cb with a constant C > 0
which does not depend on the mesh-size. Finally, |Tℓ| denotes the cardinality of
Tℓ. In contrast to [5] the proofs are based on the eigenvalue formulation and not on
a relation to its corresponding source problem. Hence, no additional oscillations
arising from the corresponding source problem have to be treated. In a second step
this result is extended to the case of inexact algebraic eigenvalue solutions: Suppose
(λ, u) with u ∈ As is an exact eigenpair and (λℓ, uℓ) and (λℓ+1, uℓ+1) corresponding
discrete eigenpairs on level ℓ and ℓ+ 1. Let the iterative approximations (µℓ, wℓ)
on Tℓ and (µℓ+1, wℓ+1) on Tℓ+1 satisfy

|λℓ+1 − µℓ+1|+ |λℓ − µℓ|+ |||uℓ+1 − wℓ+1|||2 + |||uℓ − wℓ|||2 ≤ ωη2ℓ (µℓ, wℓ)

for sufficiently small ω > 0. Then the iterative solutions µℓ and wℓ converge
optimal up to positive constants,

|λ− µℓ|+ |||u− wℓ|||2 . (|Tℓ| − |T0|)−2s.

Finally this result leads to an optimal combined AFEM and numerical linear al-
gebra algorithm AFEMES which does not need any coarsening or saturation as-
sumption [1].
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Adaptive solution of elliptic PDE-eigenvalue problems

Agnieszka Międlar

(joint work with Volker Mehrmann)

Many modern technological applications, e.g. vibration of structures, computa-
tion of acoustic fields or energy levels in quantum mechanics, involve the solution
of the eigenvalue problems for partial differential equations (PDEs). It has been
an important research topic in the last 30 years to design the adaptive finite el-
ement methods (AFEM) for PDE-eigenvalue problems with meshes that reduce
the computational complexity, while retaining the overall accuracy.

In most AFEM approaches it is assumed that the resulting finite dimensional
algebraic problem (linear system or eigenvalue problem) is solved exactly and
the computational costs for this part of the method as well as the fact that this
problem is solved in finite precision arithmetic are typically ignored. However, in
particular, in the context of eigenvalue problems, often the costs for the solution
of the algebraic eigenvalue problem dominate the total costs, and (in particular
for nonsymmetric problems) the desired accuracy may not be achievable due to
ill-conditioning.

We introduce a new adaptive finite element algorithm called AFEMLA which
incorporates the adaptation in the algebraic approach. It allows us to avoid the
usual assumption that the solution of the discrete problem is exact, to assure a
good approximation via AFEM. Since the accuracy of the computed eigenvalue
cannot be better than the quality of the discretization, there is no need to solve the
algebraic eigenvalue problem up to very high precision if the discretization scheme
guarantees only small precision. The goal of the adaptive method is to achieve
a desired accuracy with minimal computational effort. In order to determine the
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error estimates, we only solve the algebraic eigenvalue problem on the current
coarse grid.

However, the algebraic adaptation alone cannot assure that the refinement pro-
cedure will lead to convergence. If the analytic approach with the standard as-
sumption of solving the algebraic problems exactly does not converge, then neither
does our extended approach. However, the AFEMLA approach makes the adap-
tation process much more efficient with guaranteed computable bounds in the
algebraic part.

In summary, we have obtained fully computable bounds between the exact
eigenvalues and computed eigenvalue approximations. Under the saturation as-
sumption, for problems with well-conditioned eigenvalues, a small residual vector
is equivalent to a good accuracy of the computed eigenvalues. Thus, if the satu-
ration assumption holds and the problem is well-conditioned, then these bounds
and the corresponding residuals can be used to control the adaptation process via
the computed coarse mesh eigenvalues and eigenvectors.

Additionally we will introduce computable error bounds for the eigenfunctions
and discuss possible extensions of our approach to the non-symmetric problems.
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Convergence of adaptive finite element methods for elliptic eigenvalue
problems with applications to photonic crystals

Stefano Giani

(joint work with Ivan G. Graham)

In the last decades, mesh adaptivity has been widely used to improve the accu-
racy of numerical solutions to many scientific problems. The basic idea is to refine
the mesh only where the error is high, with the aim of achieving an accurate so-
lution using an optimal number of degrees of freedom. There is a large amount of
numerical analysis literature on adaptivity, in particular on reliable and efficient
a posteriori error estimates. Recently, the question of convergence of adaptive
methods has received intensive interest and a number of convergence results for
the adaptive solution of boundary value problems have appeared.

We proved the convergence of an adaptive linear finite element algorithm for
computing eigenvalues and eigenvectors of scalar symmetric elliptic partial differ-
ential operators in bounded polygonal or polyhedral domains, subject to Dirichlet
boundary data. Such problems arise in many applications, e.g. resonance problems
and nuclear reactor criticality, to name but two.

Throughout, Ω will denote a bounded domain in Rd (d = 2 or 3). In fact Ω will
be assumed to be a polygon (d = 2) or polyhedron (d = 3). We will be concerned
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with the problem of finding an eigenvalue λ ∈ R and eigenfunction 0 6= u ∈ H1
0 (Ω)

satisfying

(1) a(u, v) := λ b(u, v) , for all v ∈ H1
0 (Ω) ,

where, for real valued functions u and v,

(2) a(u, v) =

∫

Ω

∇u(x)TA(x)∇v(x)dx and b(u, v) =

∫

Ω

B(x)u(x)v(x)dx .

Here, the matrix-valued function A is required to be symmetric and uniformly
positive definite, i.e.

(3) 0 < a ≤ ξTA(x)ξ ≤ a for all ξ ∈ R
d with |ξ| = 1 and all x ∈ Ω.

The scalar function B is required to be bounded above and below by positive
constants for all x ∈ Ω, i.e.

(4) 0 < b ≤ B(x) ≤ b for all x ∈ Ω.

We will assume that A and B are both piecewise constant on Ω and that any
jumps in A and B are aligned with the meshes Tn (introduced below), for all n.

Throughout the report, for any polygonal (polyhedral) subdomain of D ⊂ Ω,
and any s ∈ [0, 1], ‖ · ‖s,D will denote the standard norm. We also define the
energy norm induced by the bilinear form a and the weighted L2 norm:

‖|u ‖|2Ω := a(u, u) and ‖u‖20,B,Ω := b(u, u) for all u ∈ H1
0 (Ω) .

Rewriting the eigenvalue problem (1) in standard normalised form, we seek
(λ, u) ∈ R×H1

0 (Ω) such that

(5)
a(u, v) = λ b(u, v), for all v ∈ H1

0 (Ω)
‖u‖0,B,Ω = 1

}

To approximate problem (5) we use the piecewise linear finite element method.
Accordingly, let Tn , n = 1, 2, . . . denote a family of conforming triangular (d = 2)
or tetrahedral (d = 3) meshes on Ω. Each mesh consists of elements denoted
τ ∈ Tn. We assume that for each n, Tn+1 is a refinement of Tn. For a typical
element τ of any mesh, its diameter is denoted Hτ and the diameter of its largest
inscribed ball is denoted ρτ . For each n, let Hn denote the piecewise constant
mesh function on Ω, whose value on each element τ ∈ Tn is Hτ and let Hmax

n =
maxτ∈Tn Hτ . Throughout we will assume that the family of meshes Tn is shape
regular, i.e. there exists a constant Creg such that: Hτ ≤ Cregρτ , for all τ ∈
Tn and all n = 1, 2, . . . .
The Tn meshes are produced by an adaptive process which ensures shape regularity.

We let Vn denote the usual finite dimensional subspace of H1
0 (Ω), consisting of

all continuous piecewise linear functions with respect to the mesh Tn. Then the
discrete formulation of problem (5) is to seek the eigenpairs (λn, un) ∈ R × Vn
such that

(6)
a(un, vn) = λn b(un, vn), for all vn ∈ Vn
‖un‖0,B,Ω = 1 .

}
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Our refinement procedure is based on two locally defined quantities, firstly a
standard a posteriori error estimator and secondly a measure of the variability
(or “oscillation”) of the computed eigenfunction. (Measures of “data oscillation”
appear in the theory of adaptivity for boundary value problems, e.g. [9]. In
the eigenvalue problem the computed eigenvalue and eigenfunction on the present
mesh play the role of “data” for the next iteration of the adaptive procedure.)
Our algorithm performs local refinement on all elements on which the minimum of
these two local quantities is sufficiently large. The refinement procedure is based
on three recursive applications of the newest node algorithm [8] to each marked
triangle, first creating two sons, then four grandsons and finally bisecting two of
the grandsons. This well-known algorithm stated without name in [9, §5.1], is
called “bisection5” in [1] and is called “full refinement” in [10]. This technique
creates a new node in the middle of each marked edge and also a new node in
the interior of each marked element. It follows from [8] that this algorithm yields
shape regular conforming meshes in 2D. In the 3D-case we use a suitable refinement
that creates a new node on each marked face and a node in the interior of each
marked element. We prove that the adaptive method converges, provided that
the initial mesh is sufficiently fine. The latter condition, while absent for adaptive
methods for linear symmetric elliptic boundary value problems, commonly appears
for nonlinear problems and can be thought of as a manifestation of the nonlinearity
of the eigenvalue problem.

Our error estimator is obtained by adapting standard estimates for source prob-
lems to the eigenvalue problem. Analogous eigenvalue estimates can be found in
[3] (for the Laplace problem) and [11] (for linear elasticity). Recalling the mesh
sequence Tn defined above, we let Sn denote the set of all the interior edges (or
the set of interior faces in 3D) of the elements of the mesh Tn. For each S ∈ Sn,
we denote by τ1(S) and τ2(S) the elements sharing S (i.e. τ1(S)∩ τ2(S) = S) and
we write Ω(S) = τ1(S) ∪ τ2(S). We let ~nS denote the unit normal vector to S,
orientated from τ1(S) to τ2(S). Furthermore we denote the diameter of S by HS .

For a function g, which is piecewise continuous on the mesh Tn, we introduce
its jump across an interior edge (face) S ∈ Sn by:

[g]S(x) :=

(
lim

x̃∈τ1(S)
x̃→x

g(x̃)− lim
x̃∈τ2(S)
x̃→x

g(x̃)

)
, for x ∈ int(S) .

The error estimator ηn on the mesh Tn is defined as

(7) η2n :=
∑

S∈Sn

η2S,n ,

where, for each S ∈ Sn,

(8) η2S,n := H2
n‖∇ · (A∇u) + λnBun‖20,Ω(S) +HS‖[~nS · A∇u]S‖20,S .

It is possible to prove, by adapting the usual arguments for linear source prob-
lems, that the error estimator ηn is reliable for both eigenvalues and eigenvectors
and that it also efficient.
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For mesh refinement based on the local contributions to ηn, we use the same
marking strategy as in [2] and [9]. The idea is to refine a subset of the elements
of Tn whose side residuals sum up to a fixed proportion of the total residual ηn.

Definition 1 (Marking Strategy 1). Given a parameter 0 < θ < 1, the procedure

is: mark the sides in a minimal subset Ŝn of Sn such that

(9)

(
∑

S∈Ŝn

η2S,n

)1/2

≥ θηn .

To compute Ŝn, we compute all the “local residuals” ηS,n, then insert edges

(faces) into Ŝn in order of non-increasing magnitude of ηS,n, until (9) is satisfied.

A minimal subset Ŝn may not be unique. After this is done, we construct another
set T̂n, containing all the elements of Tn which contain at least one edge (face)

belonging to Ŝn.
In order to prove our convergence theory, we require an additional marking

strategy based on oscillations (Definition 2 below). This also appears in some
theories of adaptivity for source problems (e.g. [2], [9], [7] and [1]), but to our
knowledge has not yet been used in connection with eigenvalue problems. The
concept of “oscillation” is just a measure of how well a function may be approxi-
mated by piecewise constants on a particular mesh. For any function v ∈ L2(Ω),
and any mesh Tn, we introduce its orthogonal projection Pnv onto piecewise con-
stants defined by:

(10) (Pnv)|τ =
1

|τ |

∫

τ

vn, for all τ ∈ Tn.

Then we define on a mesh Tn:

(11) osc(v, Tn) := ‖Hn(v − Pnv)‖0,B,Ω .

Definition 2 (Marking Strategy 2). Given a parameter 0 < θ̃ < 1: mark the

elements in a minimal subset T̃n of Tn such that

(12) osc(un, T̃n) ≥ θ̃ osc(un, Tn) .

Analogously to (9), we compute T̃n by inserting elements τ into T̃n according to
non-increasing order of their local contributions H2

τ ‖(un − Pnun)‖20,B,τ until (12)
is satisfied.

The main result is Theorem 3 below which proves convergence of the adaptive
method and also demonstrates the decay of oscillations of the sequence of approx-
imate eigenfunctions under the assumption that the eigenvalue λ is simple. The
proof of the convergence result can be found in [5].

Theorem 3. Provided the initial mesh T0 is chosen so that Hmax
0 is small enough,

there exists a constant p ∈ (0, 1) such that the recursive application of our adaptive
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algorithm yields a convergent sequence of approximate eigenvalues and eigenvec-
tors, with the property:

(13) ‖|u− un ‖|Ω ≤ B0p
n, |λ− λn| ≤ B2

0p
2n,

and

(14) λn osc(un, Tn) ≤ B1p
n,

where B0 and B1 are positive constants.

Finally, in [4] we extended the convergence result for our adaptive method to
Hermitian elliptic partial differential operators with discontinuous coefficients in
bounded polygonal, subject to periodic boundary conditions. We are particularly
interested in applying our converging method to photonic crystals, which are used
for optical communications, filters, lasers, switchers and optical transistors. More
specifically we used our convergent adaptive finite element method to localize the
spectral band gaps of crystals and also to compute accurately and efficiently the
modes trapped in the defects of the crystals. These modes are very important in
applications because they decay exponentially away from the defects, and so they
can remain well confined within the crystal. Numerous numerical experiments on
photonic crystals can be found in [6, 4].
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A robust hierarchical eigenvalue/eigenvector enhancement

Luka Grubǐsić

(joint work with Randolph Bank and Jeffrey S. Ovall)

We prove the reliability and efficiency of a variant hierarchical basis eigenvalue/
eigenvector approximation’s estimator for a general symmetric and elliptic op-
erator. The reliability estimates hold without any further assumptions save the
well-posedness of the associated variational boundary value problem(s). The new
estimator extends to general symmetric divergence type operators our earlier re-
sult on hierarchical error estimators from [2]. The extension is based on the recent
work [5].

Further, we present a framework for incorporating the information contained in
the hierarchical error estimator to enhance the convergence properties of the eigen-
value approximation. Also, a robust method for enhancing eigenvector approxima-
tions is presented. Let us restate that our theory of the convergence enhancement
for both eigenvalues and eigenvectors is presented under the sole assumption that
associated boundary value problem is well-posed. This is our definition of robust.

An alternative eigenvalue enhancement technique can be realized with gradient
recovery approach as is reported in [4]. In comparison with [4] we offer a theory
which is better amenable to treating eigenvalue multiplicity. Furthermore, our
theory uses less regularity assumptions on the operator as well as on the triangu-
lar mesh (triangulation) and it treats eigenvector enhancement within the same
framework.

To simplify the discussion, let us consider a simplest symmetric and elliptic
divergence type operator. We consider the formal differential expression

(1) Au = ∇ · (A∇u)

as the self-adjoint operator which is defined by the quadratic form a(u, u) =∫
RA∇u · ∇u, u ∈ H1

0 (R) in the sense of Kato. Here R ⊂ R2 is a bounded

polygonal domain, A is an appropriate L∞(R) matrix valued function and H1
0 (R)

is the Sobolev space of functions with zero trace on the boundary ∂R.
To compute discrete approximations of the eigenvalues of A we proceed in the

standard way. Let Td be a conforming triangulation of R. For a given Td we define
the finite dimensional function spaces:

Ld = {u ∈ H1
0 (R) | for T ∈ Td, u|T is a linear function},(2)

Qd = {u ∈ H1
0 (R) | for T ∈ Td, u|T is a quadratic function} .(3)

We will also make use of the space Bd of edge bubble functions, which are those
functions from Qd which vanish at the vertices of all triangles in Td.

A discrete variant of (1) now reads: Find nonzero u ∈ Ld such that

(4)

{∫
R
A∇u · ∇ψ = λ

∫
R
uψ, for all ψ ∈ Ld∫

R
|u|2 = 1.
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Figure 1. Six refinements—error for the linear approximation,
error for the quadratic approximation, error for the enhanced ap-
proximation.

The problem (4) is attained by a finite number of discrete eigenvalues λi(Ld) and
discrete eigenvectors ui(Ld), i = 1, . . . , dimLd. The discrete eigenvalues λi(Ld)
(discrete eigenvectors ui(Ld)) are often called the Ritz values/vectors.

Let us assume that we want to approximate the eigenvalue λq, q ∈ N of mul-
tiplicity m ∈ N of the self-adjoint elliptic operator A from (1). This is to say we
assume that

λq−1 < λq = λq+1 = · · · = λq+m−1 < λq+m,

holds for the standard numeration of lowermost eigenvalues of A. We also assume
that q +m < dimLd. By Pd we denote the orthogonal projection onto the linear
span of

{uq(Ld), . . . , uq+m−1(Ld)}.
For ψ ∈ Ran(Pd) we consider the functions ulin(ψ, Td) ∈ Ld and ε(ψ, Td) ∈ Bd

defined by:
∫

R

A∇ulin(ψ, Td) · ∇v =

∫

R

ψv for all v ∈ Ld

∫

R

A∇ε(ψ, Td) · ∇v =

∫

R

ψv −∇ulin(ψ, Td) · ∇v for all v ∈ Bd .

As enhanced eigenvectors we propose

ueni (Td) = ui(Ld) +
√
λi(Ld) ε(ui(Ld), Td), ueni (Td) ∈ Qd.

Roughly speaking we establish that, assuming λeni (Td) =
a(uen

i (Td),u
en
i (Td))

‖uen
i (Td)‖2 is the

enhanced eigenvalue, we have

|λi − λeni (Td)|
λi

≈ |λi − λi(Qd)|
λi

.
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Figure 2. Enhanced and non-enhanced eigenvector on a rough mesh

Here λi(Qd) is the piecewise quadratic eigenvalue approximation obtained by sub-
stituting the test space Qd into the variational formulation (4) and ‖ · ‖ is the
norm on L2(R).

We also present a formula which computes the enhanced eigenvalues λeni (Td)
solely from ueni (Ld) and the hierarchical error estimator a(ε(ui(Ld), ε(ui(Ld)), see
also [2, Theorem 3.1]. This formula is to be preferred for practical purposes, since
a direct computation involving a(ueni (Td), ueni (Td)) might be to expensive to be
competitive.

The results of preliminary FreeFEM tests can be seen on Figure 1. In short, we
claim that for a little more than Linear–Linear eigenvalue solution λi(Td), ui(Td)—
by say a call to an ARPACK procedure—we obtain both an eigenvalue as well as
eigenvector approximations which satisfy the same estimates as do the Quadratic–
Quadratic eigenvalue/vector approximations λi(Qd), ui(Qd). For more on the as-
sessment of the computational cost for computing ε(ui(Ld)) see [2, Section 5].
The theoretical results which we have just described have been tested in various
experiments which include testing in MATLABr, FreeFEM and PLTMG.
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The calculation of the distance to instability by the computation of a
Jordan block

Melina Freitag

(joint work with Alastair Spence)

We introduce a new method for computing the distance of a stable matrix to the
set of unstable matrices. Let A be a complex n×n matrix with all its eigenvalues
in the open left half plane. In this case A is called a stable matrix. Stability
is a very important property for physical and engineering applications (see, for
example, [6] for a collection of examples). However, a small perturbation E to the
matrix A may lead to eigenvalues of A+E crossing the imaginary axis and hence
the matrix A+ E being unstable. Papers which deal with the problem of finding
the smallest perturbation E which makes A + E unstable are those of van Loan
[8] and Byers [1].

The smallest singular value of A ∈ Cn×n satisfies

(1) σmin(A) = min{‖E‖F | det(A+ E) = 0, E ∈ C
n×n},

which leads to the minimising Emin = −σvuH where σ is the smallest singular
value of A and v, u the corresponding right and left singular vectors. The distance
of a matrix A to instability can be described as

β(A) = min{‖E‖F | η(A + E) = 0, E ∈ C
n×n},

where η(A) = max{Re(λ) |λ ∈ Λ(A)}. If η(A) is negative, A is stable and if A+E
has an eigenvalue on the imaginary axis then E is a destabilising perturbation. In
this case (A + E − ωiI)z = 0 for some ω ∈ R and z ∈ Cn. Using (1) this leads to
a measure of the distance to instability of a stable matrix A as defined in [8],

β(A) = min
ω∈R

σmin(A− ωiI),

where σmin(A − ωiI) is the smallest singular value of A − ωiI. For any ω ∈ R

upper and lower bounds on β(A) (see [8]) are given by

β(A) ≤ σmin(A− ωiI). and
1

2
sep(A) ≤ β(A),

where
sep(A) = min{‖AY + Y AH‖F , Y ∈ C

n×n, ‖Y ‖F = 1}
is the separation of A and −AH , AH denotes the complex conjugate transpose of
A and ‖ · ‖F the Frobenius norm. Clearly, sep(A) = 0 if and only if A has an
eigenvalue on the imaginary axis.

In [1] a bisection method for computing β(A) was introduced. The method
provides lower and upper bounds on β(A) but requires the solution of a sequence
of eigenvalue problems for the 2n× 2n Hamiltonian matrix

H(α) =

[
A −αI
αI −AH

]

for a positive real α. In [1, Theorem 1] it has been shown that H(α) has a pure
imaginary eigenvalue if and only if α ≥ β(A). It is clear that the eigenvalues of
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H(0) are the union of the eigenvalues of A with the eigenvalues of −AH , where
the latter are the eigenvalues of A mirrored in the imaginary axis. Hence, in order
to find the distance to instability one needs to find the minimum value of α such
that H(α) has two identical imaginary eigenvalues. We show that in this case and
for the critical value of α, H(α) has a Jordan block of dimension 2, and we shall
exploit this fact in our algorithm.

He and Watson [3] built on the ideas in [1] and used a method based on inverse
iteration for singular values in order to find a stationary point of f(ω) = σmin(A−
ωiI) and then solved an eigenvalue problem for H(α) in order to check if this point
is a global minimum.

We introduce a new algorithm to find the minimum value of α such that H(α)
has a pure imaginary eigenvalue. Our method is based on the implicit determi-
nant method of [7] but is extended to find the value α such that H(α)−ωiI has a
zero eigenvalue corresponding to a 2-dimensional Jordan block. Numerical experi-
ments indicate that this method proves to be significantly faster than the methods
discussed in [1] and [3].

In the talk we show that in the generic case H(α) − ωiI has a 2-dimensional
Jordan block at the required value of α. We extend the implicit determinant
method of [7] to the case of a 2-dimensional Jordan block. Then we describe the
Newton and Gauß-Newton methods to solve the nonlinear equations obtained from
the implicit determinant method. We finally give numerical examples to illustrate
the theory and which show that the method is competitive with and in almost all
cases outperforms earlier algorithms.
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Nonlinear eigenvalue problems in Density Functional Theory
calculations

Jean-Luc Fattebert

Developed in the 1960’s by W. Kohn and coauthors[1, 2], Density Functional
Theory (DFT) is a very popular quantum model for First-Principles simulations
in chemistry and material sciences. It allows calculations of systems made of hun-
dreds of atoms. Indeed DFT reduces the 3N-dimensional Schroedinger electronic
structure problem to the search for a ground state electronic density in 3D. In
practice it leads to the search for N electronic wave functions solutions of an en-
ergy minimization problem in 3D, or equivalently the solution of an eigenvalue
problem with a non-linear operator.

We consider the Density Functional Theory energy functional written as a func-
tional of N orthonormal electronic wave functions ψi (Kohn-Sham formulation)

EKS [{ψi}Ni=1] =

N∑

i=1

∫

Ω

ψi(x) (−△ψi) (x)dx +

∫

Ω

∫

Ω

ρ(x1)ρ(x2)

|x1 − x2|
dx1dx2(1)

+ EXC [ρ] +

N∑

i=1

∫

Ω

ψi(x)(Vextψi)(x)dx

where ρ is the electronic density defined by

(2) ρ(x) =

N∑

i=1

|ψi(x)|2

(see for example [3]). EKS is made of the sum of the kinetic energy of the elec-
trons, the Coulomb interaction between electrons, the exchange and correlation
electronic energy, and the energy of interaction of the electrons with the potential
generated by all the atomic cores Vext. Given an external potential Vext — defined
by the various atomic species present in the problem, their respective positions
and pseudopotentials — the ground state of the physical system is obtained by
minimizing the energy functional (1) under the orthonormality constraints

(3)

∫

Ω

ψi(x)ψj(x) = δij , i, j = 1, . . . , N.

To avoid mathematical difficulties irrelevant in the discussion of the numerical
solver, let us assume that we have a problem in a finite dimensional space of
dimension M resulting from the discretization of the above equations. To be
concrete, suppose that we have a finite difference discretization on a uniform mesh
with periodic boundary conditions, and thus the functions ψi are M-dimensional
vectors with components corresponding to their values at the mesh points, ψi,k =
ψi(xk). Let Lh be a finite difference approximation of the Laplacian operator.
Without restriction of generality, wave functions are assumed to take real values
only.

One can derive the Euler-Lagrange equations associated to the minimization
problem (1) with N2 Lagrange parameters corresponding to the orthonormality
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constraints (3). One obtains the so-called Kohn-Sham (KS) equations in their

usual form for the particular choice of the functions {ψi}Ni=1 which diagonalizes
the matrix of the Lagrange parameters,





−Lhψi + VKS [ρ]ψi = λiψi

ρ(xk) =
∑N

i=1 |ψi(xk)|2∑M
k=1 ψi(xk)ψj(xk) = δij

where VKS is a discretized nonlinear effective potential operator (see e.g. [3]). In
this approach, one has to find the N lowest eigenvalues λi, i = 1, . . . , N and the
corresponding eigenfunctions. We assume that λN+1 − λN > 0.

We can represent the solution of the discretized problem as an M by N matrix

Ψ = (ψ1, . . . , ψN ) .

Ψ represents the invariant subspace spanned by the eigenvectors associated with
the N lowest eigenvalues. Other representations of that same subspace by N
linearly independent vectors can be written as

Φ = (ϕ1, . . . , ϕN ) .

One can find an N × N matrix C such that Ψ = ΦC. C satisfies CCT = S−1

where S = ΦTΦ, the Gram matrix, is of rank N . Using the previous relations, the
electronic density can be written in terms of the matrix elements of Φ and S−1,

ρk =

N∑

i,j=1

(
S−1

)
ij
ΦkiΦkj

where ρk denotes the value of the electronic density at the mesh point xk. Also
the KS equations for Φ can be rewritten as

(4) −LhΦ+ VKS [ρ]Φ = ΦS−1HΦ

where HΦ = ΦT (−Lh + VKS)Φ. In this formulation, unlike more traditional
approaches which include an additional equation to enforces orthonormality, the
columns of Φ constitute a general nonorthogonal basis of the trial invariant sub-
space.

In first-principles molecular dynamics simulations, the equations of Density
Functional Theory need to be solved at every step to determine the forces acting
on individual atoms and responsible for the dynamics. To obtain meaningful
statistics, O(105) steps are required. Thus an efficient solver is needed for the KS
equations.

For finite differences approaches — or pseudo-spectral methods also very pop-
ular in the field —, about 1% of the eigenpairs of large sparse KS Hamiltonian
operators are needed. In this context, the nonlinear problem — Eq.(4) — can
be efficiently solved using a subspace preconditioned inverse iteration [4]. A good
preconditioner can be obtained based on the observation that the Hamiltonian
operator is a Laplacian plus a perturbation (potential) [5]. Close to convergence,



278 Oberwolfach Report 37

subspace preconditioned inverse iterations can be accelerated using a simple ex-
trapolation scheme for Φ, using the approximations obtained at the previous m
steps of the iterative solver,

Φ̄k := Φk +

m∑

j=1

θj(Φk−j − Φk).

The columns of Φ are assumed to be normalized at each step. The coefficients
θj , j = 1, ...,m are obtained from a residual minimization condition. Small values
of m (1 or 2) work well in practice. Numerical results demonstrate excellent
convergence rate for large scale applications involving over a 1000 eigenpairs. Such
an algorithm is compatible with recently proposed O(N) complexity approaches
where the searched subspace is represented by a set of functions strictly localized
in real-space [6].

Financial support for this research was provided by the Office of Science, U.S.
Department of Energy, SciDAC Grant DE-FC02-06ER46262. This work was per-
formed under the auspices of the U.S. Department of Energy by Lawrence Liver-
more National Laboratory under Contract DE-AC52-07NA27344.
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Local Finite Element Discretizations for Quantum Eigenvalue
Problems

Aihui Zhou

(joint work with Xiaoying Dai, Xingao Gong, Lihua Shen, Dier Zhang)

It is known that for quantum many-particle systems, there is a general principle
of locality or “nearsightedness” that the properties at one point may be considered
independent of what happens at distant points [5, 7, 9]. It is also shown that the
wavefunction of a quantum many-particle system is somehow smooth and oscillates
in the region of the system only (c.f., e.g., [1, 6, 13]). In modern electronic structure
computations, the so-called density functional theory is fundamental, with which
Kohn-Sham equations need to be solved [2, 8, 11]. Thus an efficient discretization
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scheme for solving the Kohn-Sham equation should be good at handling the locality
of the system.

The central computation in solving Kohn-Sham equations is the repeated so-
lution of the following model eigenvalue problem, posed on a convex polygonal
domain Ω ⊂ R3:

{
−∆u+ V u = λu in Ω,

u = 0 on ∂Ω,
(1)

where V is some effect potential and smooth in the pseudopotential setting.
As we know, a significant strength of the finite element method lies in the

ability to place adaptive/local refinements in regions where the desired functions
vary rapidly while treating the distant zones with a coarser description. Based
on these observations and our understanding of local behaviors of finite element
solutions to some elliptic partial differential problems, we have proposed some local
finite element discretizations for a class of quantum eigenvalue problems. The main
idea of our approach is to use a lower order finite element to approximate the low
frequency of the solution and then to use some linear algebraic systems to correct
the residual (which contains mostly high frequencies) in the higher order finite
element space by some local and parallel procedure.

Let us use (1) to give a description of the main idea. Let Sh,1
0 (Ω) and Sh,2

0 (Ω),

satisfying Sh,1
0 (Ω) ⊂ Sh,2

0 (Ω) ⊂ H1
0 (Ω), be the linear finite element space and

the quadratic finite element space associated with a finite element grid T h(Ω),
respectively. We may employ the following algorithm to discretize (1) to obtain
eigenpair approximations:

(1) Solve an eigenvalue problem in the linear finite element space: Find λh,1 ∈
R1, uh,1 ∈ Sh,1

0 (Ω) such that ‖uh,1‖L2(Ω) = 1 and
∫

Ω

(∇uh,1 · ∇v + V uh,1v) = λh,1

∫

Ω

uh,1v ∀v ∈ Sh,1
0 (Ω).

(2) Solve a linear boundary value problem in the quadratic finite element space

locally: Find eh,2 ∈ Sh,2
0 (Ω0) such that

∫

Ω0

(∇eh,2 · ∇v + V eh,2v)

= λh,1

∫

Ω0

uh,1v −
∫

Ω0

(∇uh,1 · ∇v + V uh,1v) ∀v ∈ Sh,2
0 (Ω0).

(3) Set:

uh =

{
uh,1 + eh,2 on Ω̄0,
uh,1 in Ω \ Ω̄0

and

λh =
a(uh, uh)

‖ uh ‖20,Ω
.
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If, for example, λh,1 is the first eigenvalue of the problem at the first step, then
under some reasonable assumption we can establish the following result [3]

‖∇(u− uh,2)‖1,D = O(h2),(2)

where u is an eigenfunction associated with the first eigenvalue λ of (1) that satisfies
‖u‖L2(Ω) = 1 and D ⊂⊂ Ω0 that means D ⊂ Ω0 and dist (∂D \∂Ω, ∂Ω0 \∂Ω) > 0.

Our numerical examples show that λh is much accurate than λh,1.
Consequently, we may also design a local computational scheme as follows: first,

solve the eigenvalue problem in the linear finite element space over a finite element
mesh T h(Ω), then solve some linear boundary value problems on a collection of
overlapped subdomains in the quadratic finite element space associated with the
same mesh T h(Ω) locally, and finally compute some Rayleigh quotient to obtain
a new eigenvalue approximation λh,2 which asymptotically has the same accuracy
as that of the quadratic finite element eigenvalue approximation. We have applied
these new schemes to several typical electronic structure computations successfully.
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Decay estimates for spectral projectors with applications to electronic
structure

Michele Benzi

(joint work with Paola Boito and Nader Razouk)

In quantum chemistry and solid state physics, one is interested in determining the
electronic structure of (possibly large) atomic and molecular systems. The problem
amounts to computing the ground state (smallest eigenvalue and corresponding
eigenfunction) of the many-body quantum-mechanical Hamiltonian (Schrödinger
operator), H. Variationally, we want to minimize the Rayleigh quotient:

E0 = min
Ψ 6=0

〈HΨ,Ψ〉
〈Ψ,Ψ〉 and Ψ0 = argminΨ 6=0

〈HΨ,Ψ〉
〈Ψ,Ψ〉

where 〈·, ·〉 denotes the L2 inner product. In the Born–Oppenheimer approxima-
tion, the many-body Hamiltonian is given (in atomic units) by

H =

Ne∑

i=1


−1

2
∆i −

M∑

j=1

Zj

|xi − rj |
+

Ne∑

j 6=i

1

|xi − xj |




where Ne = number of electrons and M = number of nuclei in the system. The
electron positions are denoted by xi, those of the nuclei by rj ; as usual, the charges
are denoted by Zj. The operator H acts on a suitable subspace of H1(R3Ne) con-
sisting of anti-symmetric functions (as a consequence of Pauli’s Exclusion Principle
for Fermions). Here, the spin is neglected in order to simplify the presentation.

UnlessNe is very small, the “curse of dimensionality” makes this problem almost
intractable. In order to make the problem more tractable, various approximations
have been devised, most notably:

• Wavefunction methods (e.g., Hartree-Fock)
• Density Functional Theory (e.g., Kohn-Sham)
• Hybrid methods (e.g., B3LYP)

In these approximations the original, linear eigenproblem HΨ = EΨ for the many-
electrons Hamiltonian is replaced by a non-linear one-particle eigenproblem:

Fψi = λiψi, 〈ψi, ψj〉 = δij , 1 ≤ i, j ≤ Ne

where λ1 ≤ λ2 ≤ · · · ≤ λNe . Here Fψi =
(
− 1

2∆+ V (ρ)
)
ψi, with ρ =

∑Ne

i=1 |ψi(x)|2.
The nonlinear problem can be solved by a ‘self-consistent field’ (SCF) iteration,
leading to a sequence of linear eigenproblems

F (k)ψ
(k)
i = λ

(k)
i ψ

(k)
i , 〈ψ(k)

i , ψ
(k)
j 〉 = δij , k = 1, 2, . . .

(1 ≤ i, j ≤ Ne), where each F (k) = − 1
2∆+V (k) is a one-electron (Fock, or effective)

Hamiltonian:

V (k) = V (k)(ρ(k−1)), ρ(k−1) =

Ne∑

i=1

|ψ(k−1)
i (x)|2.
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Solution of each of the (discretized) linear eigenproblems above leads to a typical

O(N3
e ) cost per SCF iteration. However, the actual eigenpairs (ψ

(k)
i , λ

(k)
i ) are

unnecessary; hence, diagonalization of the (discretized) one-particle Hamiltonians
can be avoided. Indeed, all one really needs is the orthogonal projector P onto
the invariant subspace

Vocc = span{ψ1, . . . , ψNe}
corresponding to the Ne lowest eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λNe (‘occupied
states’). At the kth SCF cycle, an approximation to the orthogonal projector

P (k) onto the occupied subspace V
(k)
occ needs to be computed. All quantities of

interest in electronic structure theory can be computed from P . For example,
the expected value for the energy of the system described by the Hamiltonian H
is given by 〈E〉 = Trace(PH), and similarly for other observables. The forces
can also be computed once P is known. P is called the density operator of the
system (von Neumann, 1927). At equilibrium, [H,P ] = 0 and P is a function of
the Hamiltonian: P = f(H). In practice, operators are replaced by matrices by
Galerkin projection onto a finite-dimensional subspace spanned by a set of basis
functions {ϕi}Ni=1, where N is a multiple of Ne. Typically, N = Nb · Ne where
Nb ≥ 2 is a moderate constant when linear combinations of Gaussian-type orbitals
are used; often, Nb ≈ 10.

For simplicity of exposition, here we use orthonormal bases. We also assume
that the basis functions are localized, so that the resulting discrete Hamiltoni-
ans are, up to some small truncation tolerance, sparse: their pattern/bandwidth
is determined by the range of the interactions. Non-orthogonal bases are easily
accommodated into the theory by a congruence transformation to an orthogonal
basis, which can be accomplished via an inverse-Cholesky factorization; the trans-
formed Hamiltonian is Ĥ = ZTHZ where S−1 = ZZT is the inverse factorization
of the overlap matrix. Since S is localized and well-conditioned independent of N ,
its inverse (and therefore its Cholesky factor Z) decays exponentially with a rate
independent of N [4, 3]. Hence, up to a small truncation tolerance Z is sparse

and so is Ĥ. From here on, we assume that the transformation has already been
performed and we denote the representation of the discrete Hamiltonian in the
orthogonal basis by H instead of Ĥ .

Thus, the fundamental problem of (zero-temperature) electronic structure the-
ory is the approximation of the spectral projector P onto the subspace spanned
by the Ne lowest eigenfunctions of H (occupied states):

P = ψ1 ⊗ ψ1 + · · ·+ ψNe ⊗ ψNe

where Hψi = λi ψi, i = 1, . . . , Ne. Clearly we can write P = f(H) where f is the
step function

f(x) =

{
1 if x < µ

0 if x > µ

with λNe < µ < λNe+1 (µ is the “Fermi level”). Alternatively, we can write
P = (I− sign(H−µI))/2. If the spectral (’HOMO-LUMO’) gap Γ = λNe+1−λNe
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is not too small, f can be well approximated by the Fermi–Dirac function

f(x) =
1

1 + eβ(x−µ)
,

which tends to a step function as the parameter β increases.
Physicists have observed long ago that for ‘gapped systems’ (like insulators

and, to some extent, semiconductors) the entries of the density matrix P decay
exponentially fast away from the main diagonal, reflecting the fact that inter-
action strengths decrease rapidly with the distance. (For metallic systems, the
decay is only algebraic.) Such decay property is crucial as it provides the basis for
so-called linear scaling (i.e., O(N)) methods for electronic structure calculations;
indeed, rapidly decaying matrices can be approximated by banded (or sparse) ma-
trices, uniformly in N . In this contribution we apply general results on functions
of sparse matrices from [1, 2] to obtain a rigorous and rather elementary proof of
this property for spectral projectors corresponding to localized Hamiltonians with
nonvanishing spectral gap. For simplicity, we state our main result for the banded
case only; extension to general sparsity patterns is fairly straightforward (see [5]).

Theorem. Let Nb be a fixed positive integer and N = Nb · Ne where the
integers Ne form a monotonically increasing sequence. Let {HN} be a sequence of
Hermitian N ×N matrices with the following properties:

(1) Each HN has bandwidth m independent of N ;
(2) There exist two (fixed) intervals I1 = [a, b], I2 = [c, d] ⊂ R with γ = c−b >

0 such that for all N = Nb · Ne, I1 contains the smallest Ne eigenvalues
of HN (counted with their multiplicities) and I2 contains the remaining
N −Ne eigenvalues.

Let PN denote the N × N spectral projector onto the subspace spanned by the
eigenvectors associated with the Ne smallest eigenvalues of HN , for each N . Then

for any ε > 0 there is a matrix P
(m̂)
N of bandwidth m̂ independent of N such that

‖PN − P
(m̂)
N ‖ < ε, for all N .

In addition, we show how to estimate the bandwidth m̂ in the approximant

P
(m̂)
N in terms of the relative spectral gap γ and bandwidth m (more generally,

sparsity pattern) of the discrete Hamiltonians; as expected, m̂ increases as γ → 0.
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Solving a 12 dimensional Schroedinger equation to compute energy
levels of CH+

5

Tucker Carrington

(joint work with Xiaogang Wang)

It is difficult to compute vibrational spectra of molecules because of the di-
mensionality of the associated Schroedinger equation. For CH+

5 the equation is
12-dimensional. Basis functions are used to discretize the Schroedinger equation
to obtain a matrix eigenvalue problem. To compute numerically exact solutions
for CH+

5 it is essential to choose basis functions that have significant amplitude in
all the 120 wells among which the protons move. [1] This, in conjunction with the
fact that there are 6 atoms, means that the required basis is huge. It is impossible
to use a basis of products of functions of a single coordinate. [2] Even if only 10
functions per coordinate were sufficient one would need 8 terabytes of memory for
a single vector.

Some sort of contraction scheme is therefore imperative. We make contracted
functions from eigenvectors of reduced-dimension Hamiltonians extracted from the
full Hamiltonian operator by setting some coordinates to reference values. [3] In
several papers we have shown that it is possible to efficiently do matrix-vector
products using a basis of simply contracted bend and stretch functions. [3, 4, 5, 6]
It is always possible to write the full Hamiltonian

(1) H = H(b) +H(s) +∆T +∆V

where

(2) ∆V (r, θ) = V (r, θ)− Vbref (θ)− Vsref (r)

and

(3) ∆T =
∑

i

∆Bi(r)T
(i)
b (θ) .

with

(4) ∆Bi(r) = Bi(r)−Bi(re) .

H(b) is the bend Hamiltonian obtained from the full Hamiltonian by discarding
the stretch kinetic energy term, choosing an appropriate reference bend potential
Vbref (θ), and evaluating the B in the bend kinetic energy operator (KEO), Eq. (5),
at a reference value for the stretch coordinates (denoted re). The bend KEO is,

(5) Tben =
∑

i

Bi(r)T
(i)
b (θ) ,

where T
(i)
b (θ) are differential operators. Note that θ represents all of the bend

coordinates and r represents all of the stretch coordinates. H(s) is the stretch
Hamiltonian obtained from the full Hamiltonian by discarding the bend kinetic
energy term and choosing an appropriate reference stretch potential Vsref (r). The
product contracted (PC) basis functions we use are products of eigenfunctions of
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H(b) and H(s). For both the stretch and the bend we retain eigenfunctions with
eigenvalues below some threshold.

Matrix elements of H(b) and H(s) in the PC basis are trivial and matrix-vector
products with these terms are simple. PC matrix-vector products with ∆T and
∆V can be done without storing vectors in the primitive bases used to solve the
bend and stretch problems. Matrix-vector products for ∆T are done by taking
advantage of the fact that it is diagonal in any stretch discrete variable represen-
tation (DVR) basis. [7] The product structure of Eq. (3) can be easily exploited.
The most difficult part of the ∆T matrix-vector product is the computation of

T
(i)
b matrix elements from eigenvectors of the bend Hamiltonian.
Matrix-vector products for ∆V are more difficult. They are done using the F

matrix idea of Ref [3] The matrix F is defined by,

(6) Fb′b,α =
∑

β

C̃βb′C̃βb∆Vβα

with

(7) C̃βb ≡
∑

l

TlβClb .

where the eigenfunctions of H(b) are

(8) Xb(θ) =
∑

l

Clbfl(θ) .

Bend quadrature points are labelled by β, stretch quadrature points are labelled by
α, Vβα is a potential value on the full grid, The fl(θ) are primitive bend functions
used to solve the bend problem. Tlβ is a matrix used to compute quadratures in

the primitive bend basis. C̃βb is a grid representation of the bend eigenfunctions.
Note that l, β, and α are composite indices, i.e., l ≡ {l1, l2,m2, l3,m3, l4,m4}, β ≡
{γ1, γ2, β2, γ3, β3, γ4, β4}, where γk and βk label θk and ϕk quadrature points, and
α labels a point on the 5d stretch grid. Eigenvalues and eigenfunctions of H(b) and
H(b) are computed using the Lanczos algorithm with no re-orthogonalization.[8, 9]
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Discrete Compactness for Spectral Edge Elements

Ralf Hiptmair

(joint work with D. Boffi, M. Costabel, M. Dauge, L. Demkowicz)

1. Introduction.

Given a Lipschitz polyhedron Ω ⊂ R3, identifying spectrally correct and spurious
free [9, Sect. 4] conforming Galerkin approximations of the Maxwell eigenvalue
problem [11]: seek u ∈ H(curl,Ω) and ω > 0, such that

(
µ−1 curl u, curl v

)
L2(Ω)

= ω2 (εu,v)L2(Ω) ∀v ∈ H(curl,Ω) ,(1)

(ε,µ ∈ (L∞(Ω))3,3 uniformly positive definite material tensors), is a challenging
problem, because the underlying operator possesses the infinite-dimensional null
space H(curl 0,Ω), leading to the essential spectrum {0} beside a point spectrum
⊂ R+.As a consequence, asymptotic density of Galerkin trial/test spaces for (1)
will not guarantee convergence of discrete eigenvalues and eigenvectors, cf. the
spurious modes reported in [6].

It was soon recognized that the Galerkin discretization of (1) requires suitable
finite element spaces which are generally termed edge finite elements (see [27, 28,
7]). Pioneering analysis for lowest order edge elements (h-version) was conducted
in [23, 24], where the so-called discrete compactness property (see below) had been
identified as a key concept. Other relevant works on the subject are [6, 1, 9, 26, 11,
2], and a review is available in [20, Sect. 4], [25, Sect. 7.3.2]. The analysis presented
in the references above covers the h-version for basically all known families of edge
finite elements.

It soon turned out that the analysis of the p- and hp-versions of edge finite
elements needed tools different from those developed for the h-version. Partial
results could only be achieved in 2D [5, 3]. Only recently, thanks to the invention of
new and powerful tools, the proof of discrete compactness for the spectral families
of edge elements (p-version) could be achieved [4, 21].
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2. Discrete Compactness.

Let
(
W1

p (M)
)
p∈N

be a family of finite dimensional subspaces of H(curl,Ω).

As discussed in [9, 8] based on [17] they ought to enjoy the following property in
order provide a convergent Galerkin discretization of (1).

Definition 1. The discrete compactness property holds for an asymptotically
dense family

(
W1

p (M)
)
p∈N

of finite dimensional subspaces of H(curl,Ω), if any

bounded sequence (up)p∈N
⊂ H(curl,Ω) with up ∈ X 1

p (M) contains a subsequence

that converges in L2(Ω).

Here, X 1
p (M) is a subspace of W1

p (M) to which discrete eigenfunctions associ-
ated with non-zero eigenvalues will belong:

X 1
p (M) := {wp ∈ W1

p (M) : (εwp,vp)L2(Ω) = 0 ∀vp ∈ Ker(curl) ∩W1
p (M)} .

To elucidate the term “discrete compactness” we recall the compact embedding
[29, 22]

X := {v ∈ H(curl,Ω) : (v, z)L2(Ω) = 0 ∀z ∈ Ker(curl)} c→֒ L2(Ω) .

When restricting (1) to X , it becomes an eigenvalue problem for an s.p.d. operator
with compact resolvent and Riesz-Schauder theory can be applied. The compact
embedding means that any bounded sequence in X , which is equipped with the
H(curl,Ω)-norm possesses a subsequence that converges in L2(Ω). Definition 1
states this very feature for the spaces X 1

p (M), which can be regarded as discrete
counterparts of X .

3. Abstract Theory

As proved in [21, Sect. 6] the discrete compactness property follows from the
existence of special projectors that preserve curl-free vectorfields:

Assumption 1. There are linear projectors Πp : D(Πp) ⊂ H(curl,Ω) 7→ W1
p (M)

that satisfy

• v ∈ H(curl 0,Ω) ∩ D(Πp) ⇒ curlΠpv = 0,

• Up := {v ∈ H1/2+s(Ω), curl v ∈ curlW1
p (M)} ⊂ D(Πp),

• u ∈ Up : ‖u−Πpu‖L2(Ω) . δ(p)
(
‖u‖H1/2+s(Ω) + ‖curl u‖L2(Ω)

)
, with

lim
p→∞

δ(p) = 0.

Here, . hints at estimates with constants independent of p and any function
involved.

Theorem 1. Under Assumption 1 the family
(
W1

p (M)
)
p∈N

features the discrete

compactness property of Definition 1.

The existence of such projectors can be reduced to more concrete assumptions
for finite element spaces built on a fixed mesh M = {T } of Ω.
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Assumption 2. The projectors Πp : D(Πp) ⊂ H(curl,Ω) 7→ W1
p (M) are local in

the sense that (Πpv)|T = Πp,T (v|T ) for all cells T ∈ M.

Assumption 3. There are local projectors Ip,T : H3/2+s(T ) 7→ Sp(T ), T ∈ M,
such that

• grad ◦Ip,T = Πp,T ◦ grad on H3/2+s(T ) (commuting diagram property)
• |ϕ− Ip,Tϕ|H1(T ) . δ(p)|ϕ|H3/2+s(T ), with lim

p→∞
δ(p) = 0.

Assumption 4. There are continuous local liftings RT : (L2(T ))3 7→ (H1(T ))3

such that for any T ∈ M
• curl ◦RT ◦ curl = curl on H(curl, T ),
• RT curlW1

p (T ) ⊂ W1
p (T ), (compatibility with FE spaces)

Theorem 2. Assumptions 2 through 4 ensure that the projectors Πp assembled
from the local projectors Πp,T comply with Assumption 1.

4. Tools

We restrict ourselves to W1
p (M), p ∈ N, generated by the first family of Ned-

elec’s tetrahedral edge elements [27].
(I) Commuting projection based interpolation operators. This class

of projectors that fit Assumptions 2 and 3 were devised by L. Demkowicz and
others in [14, 15, 13, 16], see also [20, Sect. 3.5] for a general construction and [21,
Sect. 4.2] for technical details. The main building blocks are projections (of traces)
onto function spaces on edges and faces of tetrahedra, and polynomial preserving
extension operators. The projection based interpolation operators from [16] allow
the choice δ(p) = (log p)3/2p−1/2−ε.

(II) Smoothed Poincaré liftings. The local liftings postulated in Assump-
tion 4 are to provide right inverses of curl, when restricted to its range. Such
operator is known as Poincaré lifting in differential geometry [10, Sect. 2.13]. For
D ⊂ R3 star-shaped with respect to a ∈ D it reads [18, Prop. 2.1]

Ra(u)(x) :=

∫ 1

0

tu(x+ t(x− a)) dt× (x− a) , x ∈ D .

Preservation of Wp(T ) under the action of Ra can be shown [19]. However, this
operator fails to meet continuity requirements of Assumption 4. As discovered in
the breakthrough paper [12], a smoothing trick often used in the theory of function
spaces offers a remedy: For D star-shaped w.r.t. ball B ⊂ D pick Φ ∈ C∞(R3)
with suppΦ ⊂ B,

∫
B Φ(a) da = 1 and define

R(u) :=

∫

B

Φ(a)Ra(u) da ,

which turns out to be a pseudo-differential operator of order -1. With D = T this
operator qualifies as a lifting RT in Assumption 4.
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Switzerland, August 2009.

[5] D. Boffi, L. Demkowicz, and M. Costabel, Discrete compactness for p and hp 2D edge
finite elements, Math. Models Methods Appl. Sci., 13 (2003), pp. 1673–1687.

[6] D. Boffi, P. Fernandes, L. Gastaldi, and I. Perugia, Computational models of electro-
magnetic resonators: Analysis of edge element approximation, SIAM J. Numer. Anal., 36
(1999), pp. 1264–1290.

[7] A. Bossavit, Whitney forms: A class of finite elements for three-dimensional computations
in electromagnetism, IEE Proc. A, 135 (1988), pp. 493–500.

[8] S. Caorsi, P. Fernandes, and M. Rafetto, Spurious-free approximations of electromag-
netic eigenproblems by means of nedelec-type elements, Math. Model. Numer. Anal., 35
(2001), pp. 331–354.

[9] S. Caorsi, P. Fernandes, and M. Raffetto, On the convergence of Galerkin finite ele-
ment approximations of electromagnetic eigenproblems, SIAM J. Numer. Anal., 38 (2000),
pp. 580–607.
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Computation of resonances for Maxwell’s equations: transparent
boundary conditions and goal oriented error estimation

Lin Zschiedrich

(joint work with Frank Schmidt)

We address the numerical computation of resonances in open optical devices. The
imaginary part of the resonance eigenvalue corresponds to radiation losses and is of
major importance in practice. Typically this imaginary part is orders of magnitude
smaller than the real part. Therefore, a precise computation of radiation losses
by means of an adaptive finite element method requires a specially constructed
goal oriented error estimator in order to guarantee optimum convergence in the
leading digits of the eigenvalue’s imaginary part irrespective of the magnitude of
the eigenvalue. Following Rannacher et. al [1, 3] we develop such an estimator
and demonstrate the accuracy of the method for a challenging leaky waveguide
mode computation benchmark problem, see Bienstman et al. [2].
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On gradient solvers for elliptic eigenvalue problems

Klaus Neymeyr

The topic of the talk is the numerical solution of large eigenvalue problems for
self-adjoint elliptic partial differential operators by means of (preconditioned) gra-
dient iterations. These iterative solvers are also called “matrix-free” iterations,
which allows to distinguish them from transformation methods; the gradient iter-
ations use the discretization and the mass matrix only in terms of matrix-vector
multiplications.

In an introductory part (preconditioned) gradient iterations are systematically
derived by a comparison of the boundary value and of the eigenvalue problem -
both problems are considered for self-adjoint elliptic partial differential operators.
For the boundary value problem a highly efficient/optimal solver is the (multi-
grid) preconditioned conjugate gradient scheme. The corresponding most efficient
scheme for the eigenvalue problem (for the same partial differential operator) ap-
pears to be the Locally Optimal Preconditioned Conjugate Gradient (LOPCG)
scheme which can reach an effectiveness comparable to that of the conjugate gra-
dient scheme.

We present a new approach to the convergence analysis of the simplest precondi-
tioned eigensolver for the generalized hermitian positive semi-definite eigenproblem
[1]. This solver is the preconditioned gradient scheme with fixed step length; the
proof reduces the derivation of the convergence rate bound to a two-dimensional
subspace by analysing the extremal behavior of the gradient flow for the Rayleigh
quotient.

Next a general hierarchy of gradient-type eigensolvers is suggested. These eigen-
solvers are based on an application of the Rayleigh-Ritz procedure (as an effective
minimizer) to subspaces which are spanned by the current preconditioned resid-
ual and a fixed number of preceding iterates. The convergence behavior of these
solvers can be understood very well by considering the limit of a preconditioning
with the exact inverse of the system matrix. In this limit these solvers are Invert-
Lanczos processes. This link between these (ideally) preconditioned eigensolvers
and the Lanczos process allows to apply the Kaniel-Paige convergence theory of
the Lanczos process in order to derive convergence estimates for a general class of
iterative schemes [2].

Furthermore, a necessary condition is derived for the poorest convergence of
these Invert-Lanczos processes with respect to level set of initial iterates having
a fixed Rayleigh quotient. It is shown that the poorest convergence is attained
in low dimensional eigenspaces. This analysis provides the justification for “mini-
dimensional” approaches to the convergence analysis of these eigensolvers; sharp
convergence estimates are derived for steepest ascent/steepest descent both in
span{x,Ax} and span{x,A−1x} [3].

References

[1] A.V. Knyazev, K. Neymeyr, Gradient flow approach to geometric convergence analysis of
preconditioned eigensolvers, SIAM J. Matrix Analysis 31 (2009), 621–628.



292 Oberwolfach Report 37

[2] K. Neymeyr, On preconditioned eigensolvers and Invert-Lanczos processes, Linear Algebra
Appl. 430 (2009), 1039–1056.

[3] K. Neymeyr, M. Zhou, On gradient type solvers for the symmetric eigenvalue problem,
under preparation (2009).

An adaptive algorithm for symmetric eigenvalue problems -
Convergence and complexity

Thorsten Rohwedder

(joint work with Wolfgang Dahmen, Reinhold Schneider, Andreas Zeiser)

In this talk, we present our results from [DRSZ] and [RSZ] concerned with the
analysis of convergence and complexity of an adaptive iteration scheme for the
calculation of the smallest eigenvalue of an elliptic operator eigenvalue problem.
Let V →֒H ∼= H∗→֒V ∗ a Gelfand triple with a dual pairing 〈·, ·〉 given on V ∗ × V .
For given bounded, symmetric bilinear form a : V × V → R which is strongly
positive (i.e. a(u, u) ≥ κ‖u‖2V ), we are concerned with finding an eigenpair (λ∗, u∗)
of the weak eigenvalue problem

a(u, v) = λ〈u, v〉 for all v ∈ V,(1)

where λ∗ is the lowest eigenvalue of a. For simplicity, we assume that λ∗ is a
simple eigenvalue, and that the rest of the spectrum is bounded from below by
Λ > λ∗. Our problem can alternatively be recast in the (weak) operator EVP

Au = λ∗Eu in V ∗.

with A : V → V ∗, Au = a(u, .), E : H → H∗, Eu = 〈u, .〉. As an example,
we mention the Poisson eigenvalue, where we have V = H1

0 (Ω), H = L2(Ω),
a(u, v) = 〈∇u,∇v〉, A = ∆ : V → V ∗.

The standard procedure for the treatment of (1) is to discretize the equation,
e.g. by finite elements or finite differences, which gives rise to a finite dimensional
discrete problem. In contrast to this, our main attention is to avoid the separation
of the discretization and solution process. Rather, we tackle the problem from a
different perspective inspired by the work of [CDD]: Instead of solving a sequence
of finite dimensional eigenvalue problems, we stick to the infinite dimensional for-
mulation. On this level we can construct an ideal iterative algorithm (formulated
in the continuous space H) basing on a gradient-type solver,

PPINVIT (Perturbed Preconditioned Inverse Iteration)

Starting vector u0 ∈ V , ||u0||H = 1.

ũn+1
ξ = un − P−1(Aun −R(un)Eun) + ξn+1,

un+1 = ũn+1
ξ /||ũn+1

ξ ||H ,

In PPINVIT, the n-th step allows for a perturbation ξn which will later in
the numerical realization of the algorithm be associated with the error invoked by
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finite-dimensional approximation of the in principle infinite dimensional residual
rn := P−1(Aun −R(un)Eun).

Sharp results for the convergence of the eigenvalues for the discretized precondi-
tioned inverse iteration (PINVIT ) have recently been reproven by a elegant, short
geometric proof [KN]. In [RSZ], we generalize this proof to the operator case
(including above perturbations): If one assumes that the preconditioner is scaled
such that ||I − P−1A||A = γ < 1, that the Rayleigh quotient R(v) of the current
iterate v fulfills λk ≤ R(v) < λk+1, and that the perturbation ξ is bounded by

(2) ‖ξ‖A ≤ γξ · ‖Av −R(v)Ev‖A−1 ,

where γ̃ := γ+γξ < 1, the next PPINVIT step gives R(v′) < λk or λk ≤ R(v′) <
λk+1. In the latter case,

R(v′)− λk
λk+1 −R(v′)

≤ q2(γ̃, λk, λk+1)
R(v)− λk
λk+1 −R(v)

,

where q(γ̃, λk, λk+1) = 1 − (1 − γ̃)(1 − λk/λk+1). A corresponding result from
[DRSZ] for the subspace error measured by sinP ∠(v, u∗) = ||(I−PP,u∗)v||P states
that asymptotically, we can maintain linear convergence of the error if the pertur-
bation is bounded by a multiple of the current residual ‖A− λ(v)Ev‖A−1 .

We now have to realize the in principle infinite dimensional updates rn (up
to the perturbation ξ) in a finite dimensional setting, particularly directing our
attention to carrying out this task at possibly low computational cost. In [RSZ],
we devise an evaluation scheme PPINVIT STEP based on the residual estimator
ρε =: ‖Aε(v) − µε(v)Eε(v)‖P−1/‖v‖P , where the ε indicates that the respective
quantities are not evaluated exactly. We show that by PPINVIT STEP, the con-
dition (2) can be fulfilled in each step while the accuracy ε needed for applications
of A and E stays bounded by ε ≥ C ·max(τ, ρ(v)).

We turn to the matter of discretization now and show that in the context of
stable wavelet discretization, our adaptive scheme exhibits in some sense asymp-
totically quasi-optimal complexity: For the coefficient vector u ∈ ℓ2(I) belonging
to the discretization of u ∈ V with respect to a chosen basis, the best accuracy
obtainable with N degrees of freedom in ℓ2(I) is

(3) σN (u) = inf{‖u−w‖ℓ2 , supp(w) ≤ N}.

We define related subspaces As of ℓ2(I) by saying that u ∈ As if it can be ap-
proximated to any accuracy ε > 0 by a vector uε ∈ ℓ2(I) with

supp(uε) ≤ ε−1/s|u|1/sAs

(see [CDD] for details). A quasi-optimal approximation to u is a sequence of
vectors for which |un−u||ℓ2 < ε(n) → 0, while supp(un) ≤ C ·ε(n)−1/s|u|As , with
constants independent of n. By using a nonlinear application scheme APPLY for
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computation of Ax we may compute an output a that, for given δ, satisfies

||Ax− a|| < δ, ||b||As ≤ C · ||x||As , supp(b) ≤ C · supp(x),
while the computation of a may be performed in linear complexity in supp(u),
ε−1/s for wide class of discretized operators (quasi-sparsity), see [CDD] for de-
tails. Analogous results are shown for the remaining involved quantities in [RSZ].
We now construct an algorithm MINIEIG from the above PPINVIT STEP and
an additional coarsening step COARSE taken from [CDD], see [DRSZ] for an al-
gorithmic formulation. MINIEIG has following properties:

Theorem. For compressible operators A and E, and a prescribed target accu-
racy δ, MINIEIG computes a vector uδ for which

∠(uδ,u
∗) ≤ C · δ, |µδ(uδ)− λ∗| ≤ C · δ.

If the eigenvector u∗ ∈ As, then

supp(uδ) ≤ C · δ−1/s

given sufficiently compressible operators. The number of floating point operations
remains bounded by C · δ−1/s.

To end with, we turn to numerical examples: For the application of stable
wavelet bases, the compressibility of functions is related with their Besov regu-
larity. Comparison of an analysis of the eigenfunctions of the Poisson eigenvalue
problem on a polygonal domain with a numerical example shows that the predicted
behaviour is reproduced for the model problem of the Laplacian on the L-shaped
domain, see [RSZ].
A second application is given by a Galerkin ansatz for the Schrödinger equation
HΨ = EΨ, (called CISD by quantum chemists), where V ⊆ H1(R3×{± 1

2})N
and H : V → V ∗ is the electronic Hamiltonian. In this case, V is discretized
in advance, but the resulting tensor product basis of functions ϕi ∈ H1(R3) of

size
(
I
N

)
is extremely large. We tested the use of COARSE -steps to keep the it-

eration data-sparse, using a threshold adjusted by the current residual measured
in the dual norm. The complexity thus reduces from N6 for usual methods to
N2 · #supp(u). Although the convergence behaviour seems to be quite robust,
the compressed supports are unfortunately still extremely large, mainly because
the standard bases of quantum chemistry are non-local. A utilization of localized
orbitals to be realized in the future looks more promising.
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Automated multilevel substructuring for elastodynamic eigenvalue
problems

Jeffrey K. Bennighof

Automated multilevel substructuring (AMLS)[1] is a method for approximat-
ing many (e.g., 104) eigenpairs of high-dimension (e.g., 107 d.o.f.) finite element
(FE) discretizations of structures, for use in frequency response calculations. In
the continuous setting, the problem domain is recursively partitioned into many
subdomains by interfaces. The Sobolev space over which the vibration differential
eigenvalue problem is defined is decomposed into a set of subspaces associated
with subdomains, and subspaces of minimum-energy extensions of trace functions
on interfaces. All of these subspaces are orthogonal in the bilinear form associated
with strain energy. Differential eigenvalue problems are defined over the subspaces,
and a basis for the global Sobolev space is constructed in terms of eigenfunctions
from all of the subspaces. All of the subspace eigenproblems are of similar form,
so their eigenspaces can be truncated consistently.

This approach can be applied to a large FE discretization by first defining
a multilevel tree of substructures, using nested dissection on the union of the
graphs of the stiffness and mass matrices. Subdomain eigensolutions are obtained
using submatrices associated with leaf nodes in the substructure tree. Interface
eigenvalue problems first require construction of interface submatrices through
definition of minimum-energy extensions in the discrete FE subspace. Partial
eigensolutions of both subdomain and interface eigenvalue problems establish a
subspace of lower dimension from which the global eigensolution is approximated.

This strategy has been found to be much more economical for producing many
approximate eigenpairs than solving the global eigenvalue problem using a Krylov
subspace approach. The frequency response error associated with the dimensional
reduction performed in AMLS is ordinarily much smaller than the FE discretiza-
tion error. AMLS enables localized dimensional reduction of the FE discretization,
on inexpensive computer hardware, in a manner that respects matrix sparsity and
handles ill-conditioned system matrices effectively.
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Spectral information and Krylov subspace methods

Zdeněk Strakoš

Spectral information naturally plays an important role in analysis and under-
standing of many phenomena in computational mathematics. It often reflects some
properties of the underlying real world problems that are approximately solved via
mathematical modeling, discretization and subsequent computation. These indi-
vidual stages should be considered parts of a single solution process which couples
together knowledge from, e.g., theory of partial differential equations, numerical
analysis and numerical methods, including numerical linear algebra. In particular,
the computational stage should not be separated from modeling, numerical analy-
sis and discretization. This is useful for achieving computational efficiency as well
as for getting an insight into various subproblems in the individual stages.

Behaviour of Krylov subspace methods for solving linear algebraic problems
may serve as an example. Unlike in the classical iterative methods, in the Lanczos
method and the conjugate gradient method (CG), or in the Arnoldi method and
the generalized minimal residual method (GMRES), the optimality at each step
over Krylov subspaces of increasing dimensionality makes a linearized description
inadequate. By their nature they represent model reductions based on matching
moments. Such view complements, to our opinion, the standard description us-
ing the projection processes framework, and it reveals in an instructive way the
nonlinear character of Krylov subspace methods.

Consider first the Hermitian case. The Lanczos and CG behaviour (including
the effects of rounding errors) is fully determined by the spectral decomposition of
the problem, but the relationship between convergence and the spectral informa-
tion is nothing but simple. This can be demonstrated by using a modification of
the classical Stieltjes moment problem, and by showing that its solution is given:

• in the language of orthogonal polynomials by the Gauss-Christoffel quad-
rature;

• in the algebraic matrix form by the Lanczos and CG method.

As a consequence, the Lanczos and CG method can be considered as a matrix
formulation of the Gauss-Christoffel quadrature. In order to allow straightforward
generalizations, we use the Vorobyev method of moments, and present some basic
Krylov subspace iterations as moment matching model reduction.

In the non-Hermitian case the spectral information is not generally sufficient
for description of behaviour of Krylov subspace methods. In particular, given an
arbitrary prescribed convergence history of GMRES and an arbitrary prescribed
spectrum of the system matrix, there is always a system Ax = b such that GMRES
follows the prescribed convergence while A has the prescribed spectrum. From
the practical point of view, discretization of convection-diffusion problems indeed
leads to algebraic systems where the link between the spectral information and
convergence of GMRES is not apparent. Moreover, the subproblem of stabilization
of the discrete solution in the convection-dominated case can not be separated from
the question on efficiency of the algebraic solver.
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Given a (non-increasing) convergence curve and an arbitrary spectrum, we know
the complete parametrization of the set of all matrices and right hand sides such
that GMRES follows the prescribed convergence while A has the prescribed spec-
trum. We believe that this offers an interesting tool which can be used in further
theoretical and experimental investigations.

This talk recalls results published in the papers [1], [2], [3], [4], [5], [6], [7], [8],
and [9]. Most of them contain extensive lists of further references. The Vorobyev
method of moments is presented in the monograph [10] (with the Russian original
published in 1958) that remained almost unknown and it is very rarely quoted.
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[1] A. Greenbaum and Z. Strakoš, Matrices that generate the same Krylov residual spaces, in
Recent Advances in Iterative Methods, G. H. Golub, A. Greenbaum, and M. Luskin, eds.,
vol. 60 of The IMA volumes in mathematics and its applications, Springer-Verlag, New York,
1994, 95–118.
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[9] Z. Strakoš and P. Tichý, On efficient numerical approximation of the scattering amplitude
c∗A−1b via matching moments, submitted to SIAM J. Sci. Comput. (2009).

[10] Y. V. Vorobyev, Methods of Moments in Applied Mathematics, Translated from the Russian
by Bernard Seckler, Gordon and Breach Science Publishers, New York, 1965.

Comparative analysis of inner-outer eigenvalue solvers

Yvan Notay

(joint work with Michiel E. Hochstenbach)

We consider inverse iteration-based eigensolvers, which require at each step solving
an “inner” linear system. We assume that this linear system is solved by some
(preconditioned) Krylov subspace method. In this framework, several approaches
are possible, which differ by the linear system to be solved and/or the way the
preconditioner is used. This includes methods such as inexact shift-and-invert,
inexact Rayleigh quotient iteration, Jacobi-Davidson and generalized precondi-
tioned inverse iteration. In this talk, we discuss and compare them, focusing on
the evolution of the “outer” convergence (towards the desired eigenpair) according
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to the numerical effort spent in inner iterations. The discussion also includes the
preconditioned Lanczos method although it is of slightly different type.

The analysis is based on the observation that all these methods extract the
approximate eigenvector from a given subspace. Then the discussion is conducted
in two phases. Firstly, we investigate the quality of this extraction; that is, con-
sidering separately each method, we examine how far is the extracted eigenvector
from the best approximation in the subspace at hand. It turns out that all method
perform remarkably well from that viewpoint.

Now, this good behavior can be, to a large extent, explained by looking more
deeply into the involved processes.

Consider first IRQI. Let V be a n ×m matrix whose columns form a basis of
the search space explored by the RQI method. The approximate eigenvector z is
then computed according to

(1)
z = V y(

V ∗(A−ηI)V
)
y = V ∗u .

On the other hand, when performing Rayleigh-Ritz extraction from the same sub-
space, one solves

(2) V ∗AV y = µ V ∗V y .

Letting δ and s be such that µ = η − δ and V y = u+ s , one has then

(3) V ∗(A−ηI)V y = δ V ∗u+ δ V ∗s .

Now, δ and s are both expected to be small in a relative sense when u is already
somehow close to an eigenvector. Hence, the last term in the right hand side is
a second order term, and the comparison of (3) with (1) indicates that IRQI will
indeed perform similarly to full Rayleigh-Ritz extraction as long as this term can
be neglected.

Further, this reasoning carries over Jacobi-Davidson. Let V be a n × m ma-
trix whose columns form a basis of the search space in which the correction t is
searched; t is computed according to

(4)
t = V y

(V ∗(I−uu∗)(A−ηI)V ) y = −V ∗r .

Now, let

Ṽ =
(
u V

)
,

so that the columns of Ṽ span the extended subspace in which the approximate
eigenvector is searched. Letting

ỹ =

(
1
y

)
,

z = u+ t satisfies
z = Ṽ ỹ ,

whereas the second equation (4) amounts to
(
V ∗(I−uu∗)(A−ηI)Ṽ

)
ỹ = 0 ;
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that is,

(5)
(
V ∗(A−ηI)Ṽ

)
ỹ =

(
V ∗u

)(
u∗(A−ηI)Ṽ ỹ

)
= αV ∗u ,

where we have let α = u∗(A−ηI)Ṽ ỹ . Since u∗u = 1 , one has also u∗(A−ηI)Ṽ ỹ =
αu∗u , and, grouping the latter relation with (5), one obtains

(6)

z = Ṽ ỹ(
Ṽ ∗(A−ηI)Ṽ

)
) ỹ = α Ṽ ∗u

ỹ1 = 1 .

This is the same as (1), except that the right-hand-side in the middle equation is
scaled so as to satisfy the last additional equation, which is unimportant since the
scaling of the approximate eigenvector does not matter. Hence, Jacobi-Davidson
acts as an IRQI method on the extended search space. Accordingly, the similarity
between Rayleigh-Ritz and IRQI when second order effects are negligible applies
as well to Jacobi-Davidson.

This allows to compare the methods on the basis of the related search space,
leaving asides their other peculiarities. As will be seen during the talk, this view-
point allows to explain why some approaches are more efficient.

Computing eigenvalues of diagonally dominant matrices accurately
with applications to differential operators

Qiang Ye

Consider a general symmetric positive definite matrix A and let 0 < λ1 ≤ λ2 ≤
· · · ≤ λn be its eigenvalues. Conventional dense matrix eigenvalue algorithms
(such as the QR algorithm) are normwise backward stable, i.e., the computed

eigenvalues λ̂i are the exact eigenvalues of A+E with ‖E‖2 = O(u)‖A‖2, where u
is the machine roundoff unit. Eigenvalues of large (sparse) matrices are typically
computed by an iterative method (such as the Lanczos algorithm), which produces

an approximate eigenvalue λ̂i and an approximate eigenvector x̂i whose residual

‖Ax̂i − λ̂ix̂i‖2 is at best (at convergence) O(u)‖A‖2‖x̂i‖2 In both cases, we have

|λ̂i − λi| ≤ O(u)‖A‖2. This is sufficient to guarantee good relative accuracy for
larger eigenvalues (i.e. for λi ≈ λn), but for smaller eigenvalue (i.e. for λi ≈ λ1),
we have

|λ̂i − λi|
λi

≤ O(u)
λn
λi

≈ O(u)κ2(A)

where κ2(A) = ‖A‖2‖A−1‖2. Therefore, the best relative accuracy of the smaller
eigenvalues that one can compute depends on the condition number of A.

For the matrix eigenvalue problem arising in discretizations of differential op-
erators, it is usually smaller eigenvalues that well approximate the eigenvalues of
the differential operators and are of interest. The finite difference discretization
leads to a standard eigenvalue problem Ax = λx and the finite element method
results in a generalized eigenvalue problem Ax = λBx, where A (and B) are often
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diagonally dominant. With the condition number for the discretized problem A
(or B−1A) typically large, smaller eigenvalues computed are expected to have a
relative accuracy of order κ2(A)u (or κ2(B

−1A)u).
For a second order elliptic differential operator, the condition number of a dis-

cretization matrix is typically of order O(h−2), where h is the mesh size. Then
the relative errors for smaller eigenvalues computed are expected to be O(h−2)u.
On the other hand, for a fourth order elliptic differential operator such as the
bi-harmonic operator, the condition number of a discretization matrix is typically
of order O(h−4). Their discretization matrices are extremely ill-conditioned even
for a modestly small h (i.e. h = 10−4) and the smaller eigenvalues computed may
have little or no relative accuracy at all.

In this talk, we present our recent works on high relative accuracy algorithms
for computing eigenvalues of diagonally dominant matrices. We present a relative
perturbation bound for the eigenvalues of symmetric positive definite diagonally
dominant matrices demonstrating that that all eigenvalues are determined to the
same relative accuracy as in the off-diagonal entries and the diagonally dominant
parts [2]. We then describe an algorithm that computes all singular values of
a diagonally dominant matrix (and hence all eigenvalues if A is also symmetric
positive definite) to high relative accuracy [1]. We further consider using the
algorithm in iterative methods for large scale eigenvalue problem and we show
smaller eigenvalues of finite difference discretizations of differential operators can
be computed accurately. Numerical examples are presented to demonstrate both
the accuracy issue of traditional algorithm as well as the high accuracy achieved
by the new algorithm.
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Scaling, Sensitivity and Stability in the Numerical Solution of
Quadratic Eigenvalue Problems

Françoise Tisseur

(joint work with N. J. Higham, D. S. Mackey and S. D. Garvey)

The purpose of this work is to emphasize the importance of scaling the coef-
ficient matrices of second order systems before numerically computing the eigen-
values via linearization. Our discussion is illustrated with a simple but nontrivial
example consisting of a slender beam simply supported at both ends and damped
at the midpoint. The equation of motion governing the transverse displacement
u(x, t) of the beam has the form

(1) ρA
∂2u

∂t2
+ c(x)

∂u

∂t
+ EI

∂4u

∂x4
= 0,
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where ρA is the mass per unit length, c(x) ≥ 0 represents the external damping
and EI is the bending stiffness. The boundary conditions are u(0, t) = u′′(0, t) =
0 and u(L, t) = u′′(L, t) = 0, where L is the length of the beam. Making the
separation hypothesis u(x, t) = eλtv(x) yields the boundary-value problem for the
free vibrations

λ2ρAv(x) + λc(x)v(x) + EI
d4

dx4
v(x) = 0,(2)

v(0) = v′′(0) = v(L) = v′′(L) = 0.

We discretize the boundary-value problem (2) by finite elements using cu-
bic Hermite polynomials as interpolation shape functions. This gives the finite-
dimensional quadratic eigenvalue problem (QEP)

(3) Q(λ)x = (λ2M + λD +K)x = 0.

The resulting mass matrix M and stiffness matrix K are symmetric positive defi-
nite by construction and D is symmetric positive semidefinite. As a consequence,
the roots of the quadratic equation x∗Q(λ)x = 0 have nonpositive real parts for
all vectors x. This implies that all the eigenvalues of (3) lie in the closed left half
plane and the beam problem is (weakly) stable.

The standard approach to the numerical solution of the QEP is to convert the
quadratic Q(λ) = λ2M + λD + K into a linear polynomial L(λ) = λX + Y of
twice the dimension of Q but with the same spectrum. The resulting generalized
eigenproblem L(λ)z = 0 is usually solved by the QZ algorithm for small to medium
size problems or by a Krylov method for large sparse problems [1], [9]. A common
choice of L in practice is the first companion form, given by

(4) C1(λ) = λ

[
M 0
0 I

]
+

[
D K
−I 0

]
.

It can be shown that C1(λ) is always a linearization in the sense that it satisfies

E(λ)C1(λ)F (λ) =

[
Q(λ 0
0 I

]
for some E(λ) and F (λ) with constant, nonzero

determinants. This implies that C1 and Q have the same spectrum. When K and
M , respectively, are nonsingular the two pencils

(5) L1(λ) = λ

[
M 0
0 −K

]
+

[
D K
K 0

]
, L2(λ) = λ

[
0 M
M D

]
+

[
−M 0
0 K

]

are other possible linearizations [7], [8].
We generated the matrices in (3) using the NLEVP MATLAB toolbox [2] via

nlevp(’damped−beam’,nele). We used nele = 100 beam elements, which result
in matrices M , D and K of dimension n = 200. The eigenvalues were computed
by calling MATLAB’s function eig, which implements the QZ algorithm, on each
of the three linearizations (4)–(5). The first three plots in Figure 1 display those
computed eigenvalues having real parts in the interval [−16, 4]. Since (4)–(5)
are all linearizations of Q, the first three plots should be identical, but in fact
they are very different, and none of them correctly displays the real part of the
spectrum of Q to visual accuracy. These three plots have one feature in common:
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Figure 1. Beam problem discretized with 100 finite elements.
Computed eigenvalues λ with Re(λ) ∈ [−16, 4] of the lineariza-
tions C1(λ), L1(λ) and L2(λ) defined in (4)–(5).

some eigenvalues lie in the right half plane, therefore implying that the discretized
beam problem is unstable and seeming to contradict the theory.

Now let us convert Q(λ) = λ2M+λD+K to Q̃(µ) = δQ(γµ) = µ2M̃+µD̃+K̃,

where λ = γµ, M̃ = γ2δM , D̃ = γδD, K̃ = δK with γ =
√
‖K‖2/‖M‖2,

δ = 2/(‖K‖2 + ‖D‖2γ). This scaling was proposed by Fan, Lin, and Van Dooren

[3]. The eigenvalues µ of Q̃(µ) are then computed by calling eig on each of the

three linearizations (4)–(5) with the scaled matrices M̃ , D̃ and K̃ in place ofM , D

and K. The eigenvalues of Q(λ) are recovered from those of Q̃(µ) via λ = γµ. The
last plot in Figure 1 shows the spectrum of Q(λ) computed using the linearization
L2 after scaling; all three linearizations (4)–(5) yield similar plots after scaling.
Note that all the eigenvalues are now in the left half-plane and that many of the
eigenvalues appear to be pure imaginary. Indeed we prove in [6] that for the
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discretized beam problem half of the eigenvalues of Q are pure imaginary and that
they coincide with half of the eigenvalues of the undamped quadratic λ2M +K. It
is therefore reasonable to believe — and we are able to conclude from our analysis
in [4], [5], [6]— that the fourth plot in Figure 1 is a good approximation of the
spectrum of Q, unlike the first three plots.

Our aim is to give a theoretical explanation of these somewhat surprising nu-
merical results and to convince the scientific community of the importance of
scaling quadratic eigenvalue problems before computing their eigenvalues via lin-
earizations. Our results are not confined to the beam problem but apply to any
quadratic eigenvalue problem.

References

[1] Z. Bai, J. W. Demmel, J. J. Dongarra, A. Ruhe, and H. A. Van der Vorst, eds.,
Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide, Society for
Industrial and Applied Mathematics, Philadelphia, PA, USA, 2000.

[2] T. Betcke, N. J. Higham, V. Mehrmann, C. Schröder, and F. Tisseur, NLEVP: A
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Some simple error estimates for the Rayleigh-Ritz method

Harry Yserentant

The Rayleigh-Ritz method is a variational method to compute the eigenvalues
below the essential spectrum and the corresponding eigenvectors. It has the ad-
vantage of being based on minimal, very general assumptions and produces optimal
solutions in terms of the approximation properties of the underlying trial spaces.
The theory of the Rayleigh-Ritz method has to a large extent been developed in
the context of finite element methods, see [1], [2], or [6]. In a recent paper [5],
Knyazev and Osborn derived error estimates into which, in contrast to the older
theory, only the best approximation error of the just considered eigenfunction
enters. Here we show that such estimates can be derived in a very simple way
utilizing the stability of certain projection operators, in the case of second order
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elliptic problems the H1-stability of the L2-projection onto the given ansatz space.
We start from the usual abstract framework with two real Hilbert spaces H0 and
H ⊆ H0 and a symmetric, coercive, and bounded bilinear form a : H × H → R.
The inner product on H0 is denoted by (u, v) and the induced norm by ‖u‖0. We
equip H with the energy norm ‖u‖ induced by the bilinear form and assume for
simplicity that ‖u‖0 ≤ ‖u‖ for all u ∈ H. The problem is then to approximate the
solutions (u, λ) ∈ H× R, u 6= 0, of the eigenvalue problem

(1) a(u, v) = λ (u, v), v ∈ H.
For this, we select an n-dimensional subspace S of H. Then there exist pairwise
orthogonal normed vectors u′1, . . . , u

′
n ∈ S and real numbers λ′1, . . . , λ

′
n with

(2) a(u′k, v) = λ′k (u
′
k, v), v ∈ S.

Without restriction, let λ′1 ≤ . . . ≤ λ′n. As will be shown, the discrete eigenvalues
λ′k approximate then the original eigenvalues λ and the discrete eigenvectors u′k
the corresponding eigenvectors u in a sense explained later. This already fixes the
method, which replicates the weak form of the eigenvalue problem and is deter-
mined by the choice of the subspace S replacing the original solution space. In the
case of a second order elliptic eigenvalue problem over the domain Ω, H0 = L2(Ω),
and H is a subspace of the Sobolev space H1(Ω), depending on the boundary con-
ditions. Typical approximation spaces S are in this case finite element spaces. The
approximation properties of the space S are measured in terms of the a-orthogonal
projection operator P : H → S defined by

(3) a(Pu, v) = a(u, v), v ∈ S.
With respect to the energy norm the projection Pu is the best approximation of
u ∈ H by an element of S, which means that for all v ∈ S
(4) ‖u− Pu‖ ≤ ‖u− v‖.
For boundary value problems, Pu is the Ritz-approximation of the solution u.

The classical error estimates are largely based on the min-max principle. As-
sume for simplicity that the spectrum is purely discrete and that the original
eigenvalues are 0 < λ1 ≤ λ2 ≤ . . . . Let u1, u2, u3, . . . be the corresponding eigen-
vectors. A typical old-style error estimate reads then as follows:

(5) 0 ≤ λ′k − λk
λk

≤ 4

λ1
sup

{
‖u− Pu‖

∣∣∣u =
k∑

i=1

αiui, ‖u‖0 = 1
}2

.

Such estimates depend not only on the quality of the approximation of the eigen-
vectors assigned to the considered eigenvalue λk but also on the size of the approx-
imation error of all eigenvectors for eigenvalues below it. This is not the case for
the following error estimate for the eigenvectors that essentially originates from [6].

Theorem 1. Let u ∈ H be an eigenvector for the eigenvalue λ. Then

(6)
∥∥∥u −

∑

|µ′
k−µ|<r

(u, u′k)u
′
k

∥∥∥
0
≤ 1

rλ
‖u− Pu‖0,
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where µ = 1/λ and µ′
k = 1/λ′k has been set and 0 < r ≤ 1/λ is arbitrary.

Proof. We first represent the difference to be estimated in the form

u −
∑

|µ′
k−µ|<r

(u, u′k)u
′
k =

∑

|µ′
k−µ|≥r

(u, u′k)u
′
k + u −

n∑

k=1

(u, u′k)u
′
k

and replace the inner products in the first sum on the right hand side by

(u, u′k) =
µ

µ− µ′
k

(u− Pu, u′k).

This is possible as u is an eigenvector and the u′k are discrete eigenvectors. Thus

(u, u′k) = λ−1a(u, u′k) = λ−1a(u′k, Pu) = λ−1λ′k (Pu, u
′
k).

The resulting error representation reads in abbreviated form

u −
∑

|µ′
k−µ|<r

(u, u′k)u
′
k =

1

λ
R (u− Pu) + (I − P0)(u− Pu),

where the operator R and the H0-orthogonal projection P0 onto S are given by

Rf =
∑

|µ′
k− µ|≥r

1

µ− µ′
k

(f, u′k)u
′
k, P0f =

n∑

k=1

(f, u′k)u
′
k.

Expressing the norms in terms of the expansion coefficients in the orthonormal
basis of S consisting of the discrete eigenvectors u′1, . . . , u

′
n, one finds

‖Rf‖20 =
∑

|µ′
k−µ|≥r

∣∣∣ 1

µ− µ′
k

(f, u′k)
∣∣∣
2

≤ 1

r2
‖P0f‖20.

This estimate is used to estimate the first term in the error representation. The
proposition follows from the orthogonality properties of the different terms. �

The larger r is chosen, the more discrete eigenvectors u′k are used to approximate
the given eigenvector u and the smaller the error is, but the less specific the relation
between the original and the discrete eigenvectors becomes. If the considered
eigenvalue λ is sufficiently well separated from its neighbors λ′, one can set

(7) r =
1

2
min
λ′ 6=λ

∣∣∣ 1
λ
− 1

λ′

∣∣∣, i.e.,
1

rλ
= 2 max

λ′ 6=λ

∣∣∣ λ′

λ′ − λ

∣∣∣.

The smaller r then is, the better the given eigenvalue λ is separated from its
neighbors. If the eigenvalue λ belongs to a cluster of closely neighbored eigenvalues,
the parameter r should be chosen accordingly and (6) be interpreted as a result on
the approximation by an element in the corresponding discrete invariant subspace.

To prove a corresponding estimate for the H-norm of the error, we assume that
the H0-orthogonal projection P0 onto the ansatz space S is stable in the energy
norm, that is, that there is a constant κ with

(8) ‖P0v‖ ≤ κ ‖v‖, v ∈ H.
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This constant should be independent of hidden discretization parameters which
holds, for example, for certain spectral methods, for wavelets, and in the finite
element case, there at least under some restrictions on the underlying grids [3], [4].

Theorem 2. Let u ∈ H be an eigenvector for the eigenvalue λ. Then

(9)
∥∥∥u −

∑

|µ′

k
−µ|<r

(u, u′k)u
′
k

∥∥∥ ≤ 2κ+ 1

rλ
‖u− Pu‖,

where µ = 1/λ and µ′
k = 1/λ′k has been set and 0 < r ≤ 1/λ is arbitrary.

Proof. The proof of (9) is based on the same error representation as that of The-
orem 1 and transfers almost literally. Particularly it uses the norm estimate

‖Rf‖2 =
∑

|µ′
k−µ|≥r

λ′k

∣∣∣ 1

µ− µ′
k

(f, u′k)
∣∣∣
2

≤ 1

r2
‖P0v‖2.

The only exception is that in the final step one can no longer argue using the
orthogonality properties of the different terms. At this point the bound for the
norm of the operator P0 enters in form of the estimate

‖P0(u − Pu)‖ ≤ κ ‖u− Pu‖
for the projection of the approximation error. �

A similar error estimate holds for the higher eigenvalues, at least for those that
are sufficiently well separated from the eigenvalues below them:

Theorem 3. Let u ∈ H be a normed eigenvector for the eigenvalue λ. Assume
that λ′k ≥ λ for all discrete eigenvalues λ′k in the neighborhood of λ fixed by the
condition |µ′

k − µ| < r, where again µ = 1/λ, µ′
k = 1/λ′k, and 0 < r ≤ 1/λ. Then

(10) min
λ′
k≥λ

(λ′k − λ) ≤
(2κ+ 1

rλ

)2
‖u− Pu‖2,

provided that there is already a discrete eigenvalue λ′k ≥ λ for which λ′k − λ ≤ λ.

Proof. Denoting by u′ the projection of u from Theorem 1 or Theorem 2 onto the
chosen span of discrete eigenvectors,

‖u− u′‖2 = λ ‖u− u′‖20 +
∑

|µ′
k−µ|<r

(λ′k − λ)(u, u′k)
2.

Since the given differences λ′k − λ are by assumption nonnegative, this implies

‖u− u′‖2 ≥ λ ‖u− u′‖20 + min
λ′
k≥λ

(λ′k − λ) ‖u′‖20.

Since u′ and u− u′ are by definition H0-orthogonal and ‖u‖0 = 1, this means

‖u− u′‖2 ≥ min
λ′
k≥ λ

(λ′k − λ) + λ

(
1− min

λ′
k≥λ

λ′k − λ

λ

)
‖u− u′‖20.

As the second term on the right-hand side of this inequality is by assumption
nonnegative, the proposition follows from Theorem 2. �
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One can even get rid of the assumption that there is already a discrete eigenvalue
λ′k ≥ λ for which λ′k−λ ≤ λ at the price of a slightly more complicated expression
on the right hand side of the error estimate. If there is a discrete eigenvalue λ′k < λ,
the best possible choice for the parameter r is given by

(11)
1

rλ
= max

{
1, max

λ′
k<λ

λ′k
λ− λ′k

}
.

Assuming the energy norm stability (8) of the H0-orthogonal projection onto
the ansatz space, the Rayleigh-Ritz method can thus take full advantage of a
higher regularity of the considered eigenvector or eigenfunction compared to the
other ones, particularly compared to those for lower eigenvalues. It should further
be noted that in the finite-element context one gains, depending on the regularity
of the problem, up to one order of approximation in the H0-norm compared to the
H-norm. By Theorem 1 this property transfers to the approximate eigenfunctions.

References

[1] I. Babus̆ka and J.E. Osborn, Finite element-Galerkin approximation of the eigenvalues and
eigenvectors of selfadjoint problems, Math. Comp. 52 (1989), 275–297.

[2] I. Babus̆ka and J.E. Osborn, Eigenvalue problems, In: Handbook of Numerical Analysis, Vol.
II, Finite Element Methods (Part 1), P.G. Ciarlet and J.L. Lions eds., 641–792, Elsevier,
Amsterdam 1991.

[3] J.H. Bramble, J.E. Pasciak, and O. Steinbach, On the stability of the L2-projection in
H1(Ω), Math. Comp. 71 (2001), 147–156.

[4] C. Carstensen, Merging the Bramble-Pasciak-Steinbach and the Crouzeix-Thomée criterion
for H1-stability of the L2-projection onto finite element spaces, Math. Comp. 71 (2001),
157–163.

[5] A.V. Knyazev and J.E. Osborn, New a priori FEM error estimates for eigenvalues, SIAM
J. Numer. Anal. 43 (2006), 2647–2667.

[6] P.A. Raviart and J.M. Thomas, Introduction à L’Analyse Numérique des Équations aux
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Inverse Spectral Computations for Damped Wave Operators

Mark Embree

(joint work with Steven J. Cox)

Can one determine the damping properties of a vibrating string from its spectrum?
We investigate this question in the context of the viscously damped wave equation

utt(x, t) = uxx(x, t) − 2a(x)ut(x, t),

posed on x ∈ (0, 1) with t > 0, with homogeneous Dirichlet boundary conditions
u(0, t) = u(1, t) = 0 for all t, and initial data for u(x, 0) and ut(x, 0). This equation
is conventionally expressed in the form of the evolution problem

[
u
ut

]

t

=

[
0 I

d2/dx2 −2a

] [
u
ut

]
,
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which we write as Ut = AU . Here Dom(A) = H2(0, 1) ∪ H1
0 (0, 1) × H1

0 (0, 1) ⊂
H1

0 (0, 1)× L2(0, 1), and we endow this space with the energy inner product
〈[

u
v

]
,

[
f
g

]〉
=

∫ 1

0

u′(x)f ′(x) + v(x)g(x) dx.

Considerable analysis of this operator, its spectrum and evolution behavior, has
been reported by Cox and Zuazua [1]. In the absence of damping, A is skew-adjoint
with eigenvalues and orthonormal eigenfunctions

λ±n = ±nπi, V±n = gn(x)

[
1
λ±n

]
, gn(x) = sin(nπx)

for n = 1, 2, . . . . Damping makes the operator nonnormal, and moves eigenvalues
into the left half plane. Constant damping, a(x) ≡ a0, changes the eigenvalues to

λ±n = −a0 ±
√
a20 − n2π2; the eigenfunctions maintain the same form.

We consider the variable damping a(x), a modest perturbation of the mean

a0 ≡
∫ 1

0

a(x) dx.

When a0 is not an integer multiple of π, all damping functions in a neighbor-
hood of a0 will give operators A with simple eigenvalues. Extending formulas of
Cox and Zuazua [1], we arrive at asymptotic expansions for the eigenvalues and
eigenfunctions:

λ±n = ±inπ − a0 ∓
ia2
2nπ

+O(1/n2)

gn(x) =
sinh(α(x) + inπx)

inπ
+

(a(x) + a(0)− 2a0) sinh(α(x) + inπx)

2π2n2

+
(α2(x) − a2x) cosh(α(x) + inπx)

2π2n2
+O(1/n3),

where a2 =
∫ 1

0
a(t)2 dt, α(x) =

∫ x

0
(a(t)− a0) dt, and α2(x) =

∫ x

0
α(t)2 dt.

These formulas provide the primary vehicle for approximate spectral inversion.
We closely follow the strategy described for (self-adjoint) Sturm–Liouville prob-
lems by Pöschel and Trubowitz [2]. Consider a parameterized family of damping
functions, at(x) = a0 + tã(x), where ã(x) ≡ a(x)− a0. Formally we have

λn(a0 + ã)− λn(a0) =

∫ 1

0

λ̇n(a0 + tã) dt.

Implicitly differentiating AVn = λnVn with respect to t and taking the inner
product with the left eigenfunction

Wn = gn(x)

[
1

−λn

]

yields the formula

λn(a0 + ã)− λn(a0) =

∫ 1

0

〈Ȧ(a+ tã)Vn(a0 + tã),Wn(a0 + tã)〉
〈Vn(a0 + tã),Wn(a0 + tã)〉 dt, (∗)
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where

Ȧ(a+ tã) =

[
0 0
0 ã

]
.

Given the spectrum for a(x) = a0 + ã(x), one can recover the constant a0 as the
dominant real part in the asymptotic formula for λn, and hence one knows the
left-hand side of (∗). We substitute asymptotic formulas for Vn and Wn into the
right-hand side of (∗) to obtain the rough approximation

Re(λn(a)− λn(a0)) ≈
∫ 1

0

ã(x)
sinh(2α(x))

2α(x)
cos(2nπx) dx.

If a(x) only deviates modestly from its mean, a0, then α(x) will be small, and we
can further approximate

Re(λn(a)− λn(a0)) ≈
∫ 1

0

ã(x) cos(2nπx) dx.

If additionally a(x) is even, then so too is ã: in this case, this last integral is simply
a scaled Fourier coefficient for ã, and we can approximate

a(x) ≈ a0 + 2

∞∑

n=1

Re(λn(a)− λn(a0)) cos(2nπx).

Computational examples illustrate the ability of this procedure to recover even
damping functions from spectral data to decent accuracy, even in the presence of
a fair degree of noise.
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Computation of Interior Eigenvalues: Restarted Nonlinear Arnoldi

Marta M. Betcke

(joint work with Vera Lochmann, Heinrich Voss)

According to [2] the main source of noise generated by vehicles moving at speeds
above 50 km/h is the sound radiated by their rolling tires. Therefore, recently a
lot of effort has been directed into the development of methods allowing for the
simulation of the effect of tire-road surface interaction, with the aim to improve
the design of the tires by for instance optimization of the tread pattern.

Simulations of the sound radiation require the solution of the Helmholtz equa-
tion

(1) ∆u+ k2u = 0

on the exterior of the domain occupied by the tire for a particular set of wave
numbers k = ωk/c, where c denotes the speed of sound. The frequencies ωk are
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obtained by Fourier analysis of the transient excitation forces f(t) ≈
∑

k fke
iωkt

such as an impact of the roughness of the road surface or the tread pattern. As
the domain is infinite, the Sommerfeld radiation condition is assumed for large r.
On the outer boundary of the tire the normal velocities of the tire ∂uk/∂n for the
particular frequency ωk and the excitition force fk

(2) −ω2
kMuk + iωkGuk +Kuk = fk

are prescribed as a boundary condition. To reduce the cost associated with the
solution of (2) for many ωk, under the assumption of modal superposition, uk ≈
ũk = Xzk, an approximation to the normal velocities for the particular frequency
ωk is extracted from the projected equation. In practice only the eigenmodes X
with frequencies close to the sought frequency ωk are used which corresponds to
the range up to 2000 Hz.

The extraction of the corresponding eigenspace, X , requires solution of the
gyroscopic eigenvalue problem of the form

(3) T (λ)x := −λ2Mx+ iλGx+Kx = 0,

where the matrices M and K are symmetric positive definite and the skew-
symmetric matrix G = −GT accounts for the presence of gyroscopic forces. Since
the system is conservative all its eigenvalues are purely imaginary and of the form
iλ. Therefore all the eigenvalues of T (·) are real and moreover T (·) admits a vari-
ational characterisation [5]. Hence, iterative projection methods like Nonlinear
Arnoldi or Jacobi Davidson [3, 4] can be used to compute the eigenvalues safely
one after another. Such methods thought hit their limitations if a large number of
eigenvalues or a set of some subsequent eigenvalues in the interior of the spectrum
is required. In order to preserve the numbering the dimension of the search space
has to be at least as large as the number of eigenvalues preceding the sought one.
Therefore the size of the projected problem is growing with the number of the
wanted eigenvalue, which results in increasing computation time consumed by the
nonlinear solver and increasing storage requirements.

To overcome these difficulties we propose a restarted variants of these methods
using a local numbering, which does not require to include the entire set of pre-
ceding eigenvectors or the corresponding part of the invariant subspace of T (λ)
into the search subspace after a restart [1].

Assume that we are given an eigenvalue λ̂ of the nonlinear eigenproblem (3),
which we call an anchor, and a corresponding eigenvector x̂. Let V be a subspace

of Cn that contains x̂, and let the columns of V form a basis of V . Then λ̂ is also
an eigenvalue of the projected problem

(4) TV (λ̂)y := V HT (λ̂)V y = 0,

and since TV (·) has the same structure that T (·) it also admits variational char-

acterisation i.e. we can assign to λ̂ a local number ℓ = ℓ(V) in the following way:

λ̂ is an ℓth eigenvalue of problem (4) if µ(λ̂) = 0 is the ℓ largest eigenvalue of the
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linear problem

(5) V HT (λ̂)V y = µ(λ̂)y.

Starting with V =: V0 we determine approximations to the eigenvalue subse-

quent to the anchor λ̂ projecting problem (3) to a sequence of subspaces V0 ⊂
V1 ⊂ V2 ⊂ . . . which are generated in course of an iterative projection method
aiming at the (ℓ(Vk)+ 1)th eigenvalue in the kth iteration step. Explicitly stating
the dependence of ℓ on Vk we emphasize that the number ℓ(Vk) of the anchor may
change in the course of the iteration.

After convergence we may continue the iterative projection method aiming at
the (ℓ(Vk)+ 2)th eigenvalue or we may replace the anchor by the newly converged
eigenpair. Since the current search space contains useful information about fur-
ther eigenvalues it is advisable to continue expanding the search spaces until the
convergence has become too slow or the dimension exceeds a given bound.

Once we have the local numbering there is no necessity any more to include
all the eigenvectors corresponding to the preceding eigenvalues or the invariant

subspace of T (λ̂) corresponding to its nonnegative eigenvalues into the search
space after a restart. All that we need to set up the new search subspace is an

eigenvector x̂ corresponding to an anchor λ̂ and an approximation v1 to the next
eigenvector (or a random vector if such an approximation is not at hand). This
leads to the restart framework in Algorithm 1.

Algorithm 1 Restart Framework

Require: Preconditioner M ≈ T (σ)−1 for a suitable shift σ,
Require: (λi, xi) an (approximate) eigenpair of T (·)
Require: v1 an approximation to xi+1

1: V = [xi, v1];
2: j = 1;
3: while Restart condition not satisfied do

4: repeat

5: Determine largest eigenvalues µ1(λi) ≥ · · · ≥ µk(λi) > 0 ≥ µk+1(λi) of (5)
6: Set ℓ := k if µk ≤ −µk+1, and else ℓ := k + 1
7: Compute (ℓ+ j)th eigenpair (λ̃ℓ+j , yℓ+j) of TV (·)
8: Expand V aiming at (λℓ+j , xℓ+j)

9: until Eigenpair (λ̃ℓ+j , V yl+j) =: (λi+j , xi+j) converged
10: j = j+1;
11: end while

The described restart technique suffers from spurious eigenvalues temporarily
arising in the search subspace and being linear combinations of the eigenvalues
outside of the part of the spectrum covered by the actual search subspace. This
phenomenon is intrinsic to higher frequency computations, when not the entire
eigensubspace corresponding to all eigenvalues from the lower end of the spec-
trum can be maintained in the search subspace. The occurrence of the spurious
eigenvalues surfaces through a repeated convergence of the algorithm to the same
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Figure 1. Nonlinear Arnoldi (left), Restarted Nonlinear Arnoldi
(right) for a model rubber wheel problem 1728 DOF.

eigenvalue. Though this can happen for other reasons as well, with simple tests it
is possible to isolate the case of arising of a spurious eigenvalue and drive it out
from the search subspace by a dedicated iteration.
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Eigenvalue Computations with Nonpolynomial Basis Functions

Timo Betcke

(joint work with A. H. Barnett, L. N. Trefethen)

Let Ω ⊂ R2 be a bounded, simply connected domain. The accurate computation
of Laplacian eigenvalues λj and corresponding eigenfunctions uj satisfying

−∆uj = λjuj in Ω(1a)

uj = 0 on ∂Ω(1b)

is an important and fascinating problem in a wide range of areas, such as energy
states in quantum systems, acoustic computations or recently in the fingerprinting
of images. In pure mathematics much attention has been devoted to this problem
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in the last century influenced by Kac’s famous 1966 article “Can one hear the
shape of a drum?” [12], in which it was asked whether there exist two nontrivially
distinct domains that have the same spectrum. Indeed, this question was first an-
swered by Gordon, Webb and Wolpert in 1992 [9] by constructing such isospectral
drums. Beautiful computations of the first few eigenvalues and eigenfunctions of
isospectral drums are given by Driscoll in [7]. A survey about Laplacian eigenvalue
problems is given by Kuttler and Sigillito in [14].

But to date the accurate computation of eigenvalues and eigenfunctions remains
a challenge. This is due to the fact that the eigenfunctions uj become highly
oscillatory compared with the global length scale of Ω as j becomes large. Standard
linear finite element methods need to resolve this oscillatory behavior leading to
discrete systems that grow at least with O(λ). Furthermore, the computation of
large eigenvalues for the discretized problem is still a major challenge for numerical
solvers.

In recent years nonpolynomial finite element methods have become more and
more attractive for the solution of Helmholtz problems with large wavenumbers.
The idea is to use locally on each element Ωi ⊂ Ω a basis of functions that already
satisfy the Helmholtz equation, such as Fourier-Bessel functions or plane waves.
This is closely related to the method of particular solutions, which for eigenvalue
problems has been popularized in the Numerical Analysis Community in the 1966
paper by Fox, Henrici and Moler [8]. A brief overview of the history of this method
and a stable numerical implementation can be found in [3].

The principle idea is the following. Denote by A(λ) a space of basis functions
gℓ ∈ C2(Ω) ∩ C(Ω), ℓ = 1, . . . , N satisfying −∆gℓ = λgℓ in Ω. Now define the
function

t(λ) = min
u∈A(λ)

‖u‖L2(∂Ω)

‖u‖L2(Ω)
.

This function measures the smallest achievable boundary error from a space of
particular solutions for a given value λ. In [13] it was shown that there exists
C > 0 and an eigenvalue λj of (1) such that

|λ− λj |
λj

≤ Ct(λ).

Hence, by minimizing t(λ) with respect to λ we can obtain accurate eigenvalue
estimates. In the physics literature this approach is also known in the context of
numerical methods for quantum billiards [10, 11, 1, 2].

The evaluation of t(λ) can be efficiently and numerically stably done using the
generalized singular value decomposition [3, 5]. The great advantage compared
to finite elements is that the computational effort of this method only grows with
O(

√
λ) since it is a boundary based approach. Furthermore, it is simple to ap-

proximate all eigenvalues in a given interval [λmin, λmax] just by evaluating t(λ)
for sufficiently many points in that interval. The disadvantage compared to finite
elements is that each function evaluation makes one GSVD computation necessary,
while finite elements can find several eigenvalues with one matrix decomposition.
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For more complicated geometries it is often of advantage not to use global
basis functions but to do a domain decomposition and to work with a set of
basis functions on each subdomain. Let Ω =

⋃
i Ωi be a decomposition of Ω into

subdomains Ωi. Define local approximation spaces

Ai(λ) :=

{
Ni∑

ℓ=1

cℓg
(i)
ℓ | cℓ ∈ R, gℓ ∈ C2(Ωi) ∩ C(Ωi)

}
.

We define the global space A(λ) such that u ∈ A(λ) if and only if u|Ωi ∈ Ai(λ).
Define T (λ, u) by

T (λ, u) =
∑

i<j

∫

Γij

λ|[u]|2ds+ |[∂νu]|2ds+
∑

i

∫

∂Ωi∩∂Ω

|u|2ds,

where Γij is the interface between two elements Ωi and Ωj and [u], respectively
[∂νu] are the jumps of u and its normal derivative across Γij . Furthermore, define

M(λ) :=
∑

i

‖u‖2L2(Ωj)
.

Then a generalization of the case of global basis functions is given by the error
functional

t(λ) := min
u∈A(λ)

( T (λ, u)

M(λ, u)

)1/2

.

One again has an error bound of the form
|λ−λj |

λj
≤ Ct(λ) for some C > 0.

This idea goes back to Descloux and Tolley in [6]. In [4] a stable implementation
based on the generalized singular value decomposition and a convergence analysis
based on Vekua theory are given. If basis functions are used that are adapted
to potential corner singularities of the eigenfunctions then these nonpolynomial
methods can be designed to have excellent exponential convergence properties
leading to accurate eigenvalue computations on a wide range of planar domains.
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Compatible Discretization of the Helmholtz Equation

Joachim Schöberl

(joint work with Maria Rechberger, Thorsten Hohage, Mark Ainswoth, Werner
Koch, Stefan Hain)

We consider the Helmholtz equation on unbounded domains. A radiation con-
dition is formulated by means of the PML method. We are looking for resonances,
i.e., discrete points of the spectrum. It is well known that the PML method causes
artificial eigenvalues already on the continuous level. We show that additional spu-
rious eigenvalues occur from the finite element discretization. We propose a finite
element method involving projection operators to avoid this spurious eigenvalues
on structured mesh.

A computer-assisted existence proof for photonic band gaps

Michael Plum

(joint work with Vu Hoang and Christian Wieners)

Photonic crystals are optical materials in which light with frequency in certain
ranges - the so-called photonic band gaps - cannot propagate, while other frequen-
cies can. Mathematically they are usually modelled by Maxwell’s equations (in
the frequency domain)

curl E = −iωH, curl H = iωεE,(1)

div(εE) = 0, div H = 0 (on R
3)

for the electric field E and the magnetic field H , with ε : R3 → R denoting
the electric permittivity, a bounded function bounded positively away from zero,
which for a photonic crystal is moreover periodic on R

3. ω is the frequency of
a monochromatic light wave sent into the crystal, and mathematically it takes
the role of a spectral parameter in (1). If ω2 is in the spectrum of (a suitable
self-adjoint operator theoretical realization of) problem (1), the light wave can
propagate in the crystal; if ω2 is in the resolvent set, the light wave is absorbed.
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Applying curl (·) to the first and curl
(
1
ε ·
)
to the second equation in (1), we

obtain the second-order problems

curl curlE = λεE, div (εE) = 0 on R
3(2)

and

curl

(
1

ε
curlH

)
= λH, div H = 0 on R

3,(3)

where λ = ω2. Specializing to the 2D-situation ε = ε(x1, x2) and to TM-polarized
waves, where E = (0, 0, u), the second equation in (2) tells that u = u(x1, x2), and
the first reads

−∆u = λεu on R
2.(4)

Assume now for simplicity that the periodicity cell of ε is Ω = (0, 1)2. By
Floquet-Bloch theory, the spectrum σ of (4) is given as a union

(5) σ =

∞⋃

n=1

In

of compact real intervals In, and in turn each In is characterized by

(6) In =
{
λk,n : k ∈ [−π, π]2

}
,

where λk,n is the n-th eigenvalue of the semiperiodic eigenvalue problem

−∆u = λεu in Ω,(7)

u(x+ z) = eik·zu(x) (x ∈ Ω, z ∈ Z
2)

depending on k ∈ [−π, π]2.

Usually, the spectral bands In in (5) overlap, but it may happen that gaps
open between them. These are the band gaps of prohibited frequencies mentioned
earlier, and it is of great practical interest to know if they are present or not.
Analytically, this question is very difficult to decide.

We propose a computer-assisted approach for proving the existence of photonic
band gaps for specific materials, i.e. for specific permittivity functions ε. We use
the characterization (5) - (7) for this purpose, but we have to overcome the prob-
lem that infinitely many eigenvalue problems (7) have to be treated due to their
dependence on k ∈ [−π, π]2.

For this purpose, we first choose a finite grid G in [−π, π]2, and compute enclo-
sures for λk,1, · · ·λk,N (withN ∈ N chosen fixed) for all k ∈G: First we use a Finite
Element discretization and Knyazev’s LOBPCG method, with multigrid precon-
ditioning, to compute approximations ũk,1, . . . , ũk,N to the first N eigenfunctions.
Next we apply variational eigenvalue enclosure techniques, more particularly the
Rayleigh-Ritz method (for upper bounds) and the Lehmann-Goerisch method (for
lower bounds), supplemented by a homotopy algorithm connecting problem (7)
to a simple constant coefficients problem which can be solved in closed form.
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Note that only the small-scale (N ×N) matrix eigenvalue problems arising in the
Rayleigh-Ritz and in the Lehmann-Goerisch method need to be solved in verified
form (using e.g. interval arithmetic).

Next, we use an explicit perturbation argument for self-adjoint operators to
capture all k ∈ [−π, π]2. Here we briefly describe the idea. Let [a, b] ⊂ R be an
interval such that, for some n ∈ N, some k ∈ G, and some δk > 0,

(8) λk,n + δk ≤ a < b ≤ λk,n+1 − δk,

whence [a, b] is contained in the resolvent set of (7). Moreover let k + h be a
perturbation of k, with |h| < rk, where

rk =
√
εmin

[√
λk,n+1 + δk −

√
λk,n+1

]
.

Then, it can be shown that [a, b] is contained in the resolvent set of the perturbed
problem (7), with k replaced by k + h.

Let (8) hold for all gridpoints k ∈ G, and suppose that

⋃

gridpoints k∈G

Ball(k, rk) ⊃ [−π, π]2.

Then, it follows directly that [a, b] is contained in a spectral gap.

We applied the method to the case where ε(x) = 1 for x ∈
[

1
16 ,

15
16

]2
(corre-

sponding to vacuum in this part of Ω) and ε(x) = 5 in the rest of Ω. We could
prove that the interval

[18.2 , 18.25]

is contained in a gap between the third and the fourth spectral band; see Figure
1 for illustration. The proof required to choose about 100 grid points k in the
Brillouin zone [−π, π]2, and altogether about 5000 eigenvalue enclosures (many of
which are needed within the homotopy algorithm mentioned above), which needed
about 90 hours computing time.
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Figure 1. Eigenvalues λk,1, ..., λk,5 as functions of k ∈ [−π, π]2.

Dealing with several eigenvalues simultaneously in nonlinear
eigenvalue problems

Daniel Kressner

We consider eigenvalue problems that are nonlinear in the eigenvalue parameter:

(1) T (λ)x = 0,

where the entries of the n × n matrix T are analytic functions in λ. In most
applications, it is of interest to compute a few eigenvalues in a specified region
of the complex plane along with the corresponding eigenvectors. For example,
when computing band gap diagrams for photonic crystals a modest number of
real or nearly real eigenvalues need to be determined for several, smoothly varying
nonlinear eigenvalue problems.

When dealing with several eigenvalues of (1) simultaneously it is crucial to find a
good representation for these eigenvalues and the corresponding eigenvectors. This
task turns out to be surprisingly intricate. In contrast to the linear case, there
may be eigenvector/eigenvalue pairs (λ1, x1), . . ., (λk, xk) of (1), for which the
eigenvalues λ1, . . . , λk are pairwise distinct but {x1, . . . , xk} is linearly dependent.
This possibility is already evident from the fact that k can be larger than n.
Another well-known example is given by

(2) T (λ) =

[
0 12
−2 14

]
+ λ

[
−1 −6
2 −9

]
+ λ2

[
1 0
0 1

,

]

for which the eigenvalues 3 and 4 share the same eigenvector
[
1
1

]
. The occurrence

of such linear dependencies is an annoyance when attempting to develop numerical
methods for computing more than one eigenvalue of (1). For example, standard
Newton methods for the simultaneous computation of several eigenvalues crucially
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depend on the existence of a basis for the invariant subspace belonging to the eigen-
values of interest. In methods that determine several eigenvalues subsequently,
such as Krylov subspace or Jacobi-Davidson methods, repeated convergence to-
wards an eigenvalue is usually avoided by reorthogonalization against converged
eigenvectors. If such an idea was directly applied to nonlinear eigenvalue problems,
eigenvalues could be missed due to linear dependencies among eigenvectors.

Extending joint work with Timo Betcke (U Reading) on polynomial eigenvalue
problems, we will show how the concept of invariant pairs can be used to address
the difficulties mentioned above. For this purpose, it will be more convenient to
reformulate the nonlinear eigenvalue problem (1) in the form

(3)
(
f1(λ)A1 + f2(λ)A2 + · · ·+ fm(λ)Am

)
x = 0.

for analytic functions f1, . . . , fm : Ω → C and constant matrices A1, . . . , Am ∈
Cn×n. A pair (X,S) ∈ Cn×k × Ck×k is called invariant w.r.t. the nonlinear
eigenvalue problem (3) if

(4) A1Xf1(S) +A2Xf2(S) + · · ·+AmXfm(S) = 0.

As a normalization condition we impose

(5) WHVl(X,S)− I = 0

for some matrix W and

(6) Vl(X,S) =




X
XS
...
XSl−1




for some sufficiently large integer l. The crucial point is to note that Vl(X,S) has
full rank under rather mild assumptions and hence imposing a condition of the
form (5) is reasonable (in contrast to imposing a condition of the formWHX = I).
The main result of our work shows that (X,S) is a regular point of the set of
nonlinear matrix equations (4)–(6). This implies that (X,S) is a well-posed object
and can be computed numerically. In fact Newton’s method can be applied in a
rather straightforward manner to (4)–(6). The use of the resulting numerical
method is illustrated for the computation of band gap diagrams mentioned above.
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Eigenvalues of fuzzy symmetric matrices

Karl Meerbergen

(joint work with Jeroen De Vlieger)

This talk reports work in progress on the eigenvalues of parameterized matrices.
Complex mathematical PDE models are used for simulating physical models.

Most simulations are currently deterministic, i.e. all physical parameters (thick-
ness, temperature, . . . ) are fixed. In practice, however, uncertainties about the
precise values of parameters make deterministic solutions less attractive. In par-
ticular, one may want to validate a solution chosen by an automatic method, that
minimizes a cost function. Often, the engineers still want to have an idea on the
behaviour of the system near the optimal parameter values.

Uncertainties can be modeled in various ways. Stochastic methods are used
for dealing with irreducible uncertainties due to the production process e.g. [5].
For an earlier stage in the design process, stochastic data about the parameters
are not known. The parameter ranges can be large and a statistical analysis is
not appropriate. The goal is to reduce the level of uncertainty. In order to study
the impact of the parameters, recently, fuzzy numbers are used [4]. A sensitivity
analysis of the parameter values (using derivatives) is only an option for small
changes of the parameters. In this talk, we study the situation where parameters
may vary significantly w.r.t. the chosen parameter values. The goal is to evaluate
the variation of the solution among the given parameter values.

In the study of vibrations, sources of uncertainties can be geometric or material
parameters, such as thickness, Young modulus, etc. An eigenvalue analysis is often
performed in order to understand vibrations. The first eigenfrequency (smallest
eigenvalue) should lie outside the frequency range for which the system is used, in
order to avoid undesired vibrations. We therefore focus on the computation of the
smallest eigenvalue. After finite element discretization, the algebraic eigenvalue
problem takes the form Ku = λMu, where K and M are symmetric, and M is
positive definite. In this talk, we only consider standard eigenvalue problems. As
we now from the literature, Ku = λMu can be written as a symmetric standard
eigenvalue problem.

Pseudospectra can be used for a sensitivity analysis. The bounds provided by
the pseudospectrum might be too large, since the specific parameter structure is
not taken into account. When only one parameter changes, the structured pseudo-
spectrum is useful. In this talk, we use fuzzy numbers as a generalization of a single
parameter perturbation.

The notion fuzzy number is an extension of fuzzy set theory [6]. We use a
tilde to denote fuzzy variables. We represent a fuzzy number x̃ by its membership
function µx̃(x) : R → [0, 1]. It defines the level of membership of x to the fuzzy
set: µx̃(x) = 1 implies that x belongs to the set and µx̃(x) = 0 means that x does
not belong to the set. For example, the concept “x is near 1” could be represented
by the fuzzy number with the membership function that is one for x = 1, zero for
x < 0.5 and x > 1.5 and values between 0 and 1 for 0.5 ≤ x ≤ 1.5. The α cut is
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defined as the set of x’s for which µx̃(x) ≥ α. When all α-cuts are intervals, x̃ is
called a convex fuzzy number.

The extension principle is used to extend a (deterministic) function f(x) with
x ∈ RN to fuzzy numbers. Let x̃ be an N -vector of convex fuzzy numbers and f
be continuous, then the extremes of the α-cuts of ỹ = f(x̃) can be computed as:

[ỹ]
−
α = min

xi∈[x̃i]α
f(x1, . . . , xn)(1a)

[ỹ]+α = max
xi∈[x̃i]α

f(x1, . . . , xn) .(1b)

There are three classes of methods for computing these extremes. The most popu-
lar one is the montecarlo method, which evaluates random samples. This method
is not only expensive, it may also be inaccurate. The most accurate class solve
the extremes by numerical optimization.

Fuzzy eigenvalues have been mentioned first for non-negative matrices [1][2],
where all matrix entries can be independent fuzzy numbers. In this talk, we
consider real symmetric matrices of the following form. Define

A(x) = B +
N∑

i=1

xiEi

where B, and Ei, i = 1, . . . , N are real symmetric. If x̃ is a fuzzy number, we call
A(x̃) a fuzzy matrix. Following the extension principle, the eigenvalues of A(x̃)
are also fuzzy numbers.

We talk about the computation of the smallest or the largest eigenvalues (which
is basically the same operation). Several approaches can be used for validating a
selection of parameter values: the pseudo-spectrum computes the variation for all
parameters together regardless the form of the perturbation. With the structure
preserving pseudo-spectrum, we can handle one parameter (or a linear combination
of parameters) at a time; this corresponds to the vertex method for fuzzy numbers,
which can only be used in specific cases. In this talk, we analyse the cost needed for
solving structured perturbations in the context of symmetric eigenvalue problems.

In order to solve the optimization problems (1) efficiently, we derive properties
of the eigenvalues of A as a function of x where x lies in an α-cut of x̃. Indeed, since
function evaluations are eigenvalue computations, it may be important to reduce
the number of function evaluations as much as possible. The key observation is
that the largest eigenvalue of A(x) is a convex function in x. This also holds when
eigenvalues are multiple. If the elements of x̃ are independent from each other,
the α-cuts are hypercubes. The consequence is that the maximum is attained
in one of the cornerpoints of the hypercube. This implies the solution of 2N

eigenvalue problems for each α-cut. The minimum is the local minimum of a
(non-smooth) convex optimization problem. A similar conclusion holds for the
smallest eigenvalue.

Details on the theory and the optimization algorithm can be found in [3].
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Dynamical Systems and Non-Hermitian Iterative Eigensolvers

Richard B. Lehoucq

(joint work with Mark Embree)

Suppose we seek a small number of eigenvalues (and the associated eigenspace)
of the non-Hermitian matrix A, having at our disposal a nonsingular matrix B
that approximates A. Given a starting vector p0, compute

(1) pj+1 = pj +B−1(θj −A)pj ,

where θj −A is shorthand for Iθj −A, and

θj =
(Apj , pj)

(pj , pj)

for some inner product (·, ·). Knyazev, Neymeyr, and others have studied this
iteration for Hermitian positive definite A; see [13, 14] and references therein for
convergence analysis and numerical experiments.

Clearly the choice of N will influence the behavior of this iteration. With
N = A, the method (1) reduces to (scaled) inverse iteration:

pj+1 = As−1pjθj .

We are interested in the case where N approximates A, yet one can apply N−1 to
a vector much more efficiently than A−1 itself. Such a N acts as a preconditioner
for A, and, hence, (1) represents a preconditioned iteration.

This method contrasts with a different class of algorithms, based on inverse
iteration (or the shift-invert Arnoldi algorithm), that apply a preconditioner to
accelerate an “inner iteration” that approximates the solution to a linear system
at each step; see, e.g., [16, 8, 10]. For numerous practical large-scale non-Hermitian
eigenvalue problems, such as those described in [17, 24], these inner iterations can
be extremely expensive and highly dependent on the quality of the preconditioner.
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In contrast, as we shall see, the iteration (1) can converge to a leftmost eigenpair
even when N is a suitable multiple of the identity.

This paper provides a rigorous convergence theory that establishes sufficient
conditions for (1) to converge to the leftmost eigenpair for non-Hermitian A. We
obtain these results by viewing this iteration as the forward Euler discretization
of the autonomous nonlinear differential equation

(2) ṗ = N−1

(
p
(Ap, p)

(p, p)
−Ap

)

with a unit step size. Here A and N are fixed but p depends on a parameter,
t; ṗ denotes differentiation with respect to t. In the absence of preconditioning,
the differential equation (2) has been studied in connection with power iteration
[5, 20], as described in more detail below. The nonzero steady-states of this sys-
tem correspond to (right) eigenvectors of A, and, hence, one might attempt to
compute eigenvalues by driving this differential equation to steady-state as swiftly
as possible. Properties of the preconditioner determine which of the eigenvectors
is an attracting steady-state.

The differential equation (2) enjoys a distinguished property, observed, for ex-
ample, in [5, 20] with N = I. Suppose that p solves (2), θ = (p, p)−1(Ap, p), and
N is self-adjoint and invertible (A may be non-self-adjoint). Then for all t,

d

dt
(p,Np) =

(
N−1(pθ −Ap), Np

)
+
(
p,NN−1(pθ − Ap)

)

= (pθ, p)− (Ap, p) + (p, pθ)− (p,Ap)

= 0.(3)

Thus, (p,Np) is an invariant (or first integral), as its value is independent of time;
see [12, section 1.3] for a discussion of the unpreconditioned case (N = I), and,
e.g., [11] for a general introduction to invariant theory and geometric integration.

The invariant describes a manifold in n-dimensional space, (p,Np) = (p0, Np0),
on which the solution to the differential equation with p(0) = p0 must fall. Simple
discretizations, such as Euler’s method (1), do not typically respect such invariants,
giving approximate solutions that drift from the manifold. Invariant-preserving
alternatives (see, e.g., [11]) generally require significantly more computation per
step (though a tractable method for the unpreconditioned, Hermitian case has
been proposed by Nakamura, Kajiwara, and Shiotani [19]). Our goal is to explain
the relationship between convergence and stability of the continuous and discrete
dynamical systems. In particular, the quadratic invariant is a crucial property of
the continuous system, and plays an important role in the convergence theory of
the corresponding discretization, even when that iteration does not preserve the
invariant.

The present study draws upon this body of work, but takes a different perspec-
tive: we seek a better understanding of iterations such as (1) that provide only
approximate solutions (with a truncation error due to discretization) to continuous
time systems such as (2). The distinction is significant: for example, a continuous-
time generalization of the power method will converge, with mild caveats, to the
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largest magnitude eigenvalue, whereas the related systems we study can poten-
tially converge to the leftmost eigenvalue at a shift-independent rate with little
more work per iteration than the power method.
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Computing the Eigenvalues of Hierarchical Matrices by LR-Cholesky
Transformations

Peter Benner

(joint work with Thomas Mach)

We investigate the use of Rutishauser’s LR-Cholesky transformation [8] to com-
pute all eigenvalues of symmetric hierarchical (H-) matrices. Historically, the LR
transformation can be considered to be the first algorithm of the class of GR
algorithms [11] and is based on the iteration

Lm+1L
T
m+1 =Mm − µmI,

Mm+1 = LT
m+1Lm+1 = L−1

m+1MmLm+1.
(1)

The hierarchical matrix format, see, e.g., [6, 7, 4], allows storing a variety
of dense matrices from certain applications in a special data-sparse way with
linear-polylogarithmic complexity. Most H-arithmetic operations, including the
H-Cholesky decomposition and the H-QR decomposition [1], have linear-polylo-
garithmic complexity, too. As for simpler structured matrices, like semiseparable
matrices, GR algorithms exist [10], it is plausible that an eigenvalue algorithm of
bulge-chasing type might also exist for H-matrices. For GR algorithms, typically
O(n) iterations are sufficient, so we expect to find an algorithm for H-matrices
with a complexity of O(n2 logα n). The quest for such an algorithm poses merely
an academic challenge, but it might become useful in a variety of applications
requiring many (small, inner) eigenvalues of differential operators discretized by
boundary- or finite-element methods.

The first straightforward approach is to substitute the Cholesky decomposition
in the LR-Cholesky transformation (1) by the H-Cholesky decomposition. This
yields a meaningful LR-Cholesky algorithm in H-matrix arithmetic, since the limit
of the iterative process is a diagonal matrix and hence an H-matrix, too. But some
of the intermediate iterates may not have good H-matrix approximations. If we
multiply two H-matrices, the rank of the product is bounded by (see [5])

kH·H ≤ CidCsp(p+ 1)kH,

with Cid the idempotency constant, Csp the sparsity constant and p the depth of
the H-tree of the involved H-matrices. This means, that the maximal rank of the
matrix Mm can grow really fast with each iteration step and they actually do in
general, see Figure 1. This can be regarded as the H-arithmetic analog to fill-in.
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Large blocks of full rank destroy the data sparsity of the hierarchical matrix and
increase the complexity to O(n3).
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Figure 1. Matrix FEM32 (left) and the same matrix after 10
steps (with shift) of the LR Cholesky transformation (right), dark
green and red (dark grey) blocks have full rank.

Matrix Dimension Time Accuracy
FEM8 64 0.04 9.4e-6
FEM16 256 3.20 1.1e-2
FEM32 1024 243.05 4.2e-2
FEM64 4096 11,116.96 2.6e-1

Table 1. Computation times for LR Cholesky transformation.

In GR algorithms it is necessary to shift the matrix Mm to accelerate the con-
vergence. In the case of LR-Cholesky transformations, the shift must preserve the
positive definiteness ofMm. There are shift strategies ensuring this by Rutishauser
[9] and Wilkinson [12]. We use some steps of inverse power iteration to find an
approximation of the smallest eigenvalue and subtract a safety margin to be sure
having a shift smaller than the smallest eigenvalue.

If the smallest eigenvalue λn is found, we have to deflate this eigenvalue. After
the deflation we can increase the shift, since the smallest eigenvalue of the deflated
matrix is λn−1 ≥ λn. There is a second type of deflation. In the QR algorithm for
Hessenberg matrices, this occurs if a subdiagonal element becomes small enough.
In our case there is no Hessenberg or band structure, so this deflation occurs if
the submatrix M(j+1 : n, 1 : j) is (close to) zero. Then we can divide the matrix
into two smaller matrices. The spectrum of Mm is the union of the spectrum of
the two smaller matrices M(1 : j, 1 : j) and M(j + 1 : n, j + 1 : n).

Table 1 shows the needed CPU-time if we use the LR-Cholesky transformation
together with the described shift and deflation strategies for four H-matrices of
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different size. These matrices present the finite-element discretisations of the 2D-
Laplacian with 8 to 64 discretisation points in each direction. We see that the
CPU-time grows slightly slower than O(n3), but faster than O(n2 log2 n). Also,
the accuracy degrades already for small n. Hence, current research focuses on im-
proving both the shift and the deflation strategies in order to improve both aspects
of the LR-Cholesky transformation for H-matrices in order to find a sequence of
iterates that have better H-matrix approximations than those obtained from the
current implementation. The existence of such a “path of iterates” within the class
of H-matrices is an open problem at this point.

The hierarchical semi-separable matrices (HSS matrices, [2]) form a subset of
the H-matrices. The H-tree of an HSS matrices have only admissible knots or
knots of the form s× s. Further the admissible blocks satisfy the condition, that
At×s is in the linear span of [0;At2×t1 ], with s < t and t = t1 ·∪ t2. The LR-
Cholesky transformation for HSS matrices produces no H-fill-in which suggests
the existence of a GR-type algorithm for this subset of the H-matrices.

For practical purposes eigenvalue algorithms for computing a small subset of
the spectrum are interesting, too. There is a well known H-matrix-vector product
of linear-polylogarithmic complexity. This product is sufficient to implement the
power method:

yk = Axk, xk =
yk

‖yk‖2
,

or the Jacobi-Davidson algorithm [3]. As in standard arithmetic, the Jacobi-
Davidson algorithm converges faster than the power method and permits the
computation of inner eigenvalues. Current and future work focus on a detailed
analysis of these methods and will also include the use of H-matrices in precondi-
tioned eigensolvers.
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Universitätsplatz 1
18055 Rostock

Prof. Dr. Yvan Notay

Universite Libre de Bruxelles
Service de Metrologie Nucleaire
(CP) 165-84)
50 av. F.D.Roosevelt
B-1050 Bruxelles

Prof. Dr. John Osborn

Department of Mathematics
University of Maryland
College Park , MD 20742-4015
USA

Prof. Dr. Beresford Parlett

Department of Mathematics
University of California
Berkeley , CA 94720-3840
USA

Prof. Dr. Joseph E. Pasciak

Department of Mathematics
Texas A & M University
College Station , TX 77843-3368
USA

Prof. Dr. Michael Plum

Universität Karlsruhe
Institut für Analysis
76128 Karlsruhe

Prof. Dr. Rolf Rannacher

Institut für Angewandte Mathematik
Universität Heidelberg
Im Neuenheimer Feld 294
69120 Heidelberg

Thorsten Rohwedder

Fakultät II -Institut f. Mathematik
Technische Universität Berlin
Sekr. MA 5-3
Straße des 17. Juni 136
10623 Berlin

Prof. Dr. Joachim Schöberl
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