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Introduction:

In [Sul77], Sullivan defined tools and models for rational homotopy inspired
by already existing geometrical objects. Moreover, he gave an explicit dictio-
nary between his minimal models and spaces, and this facility of transition
between algebra and topology has created many new topological and geo-
metrical theorems in the last 30 years.

When de Rham proved that H∗(ADR(M)) ∼= H∗(M ;R) for the differen-
tial algebra of differential forms ADR(M) on a manifold M , it immediately
provided a link between the analysis on and the topology of the manifold.
Sullivan suggested that even within the world of topology, there is more
topological information in the de Rham algebra of M than simply the real
cohomology.

In the de Rham algebra, there is information contained in two different
entities: the product of forms, which tells us how two forms can be com-
bined together to give a third one and the exterior derivative of a form. In
a model, we kill the information coming from the product structure by con-
sidering free algebras ∧V (in the commutative graded sense) where V is an
R-vector space. This pushes the corresponding information into the differ-
ential and into V where it is easier to detect. More precisely, we look for
a cdga (for commutative differential graded algebra) free as a commutative
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graded algebra (∧V, d) and a morphism ϕ : (∧V, d) → ADR(M) inducing an
isomorphism in cohomology.

For instance, if G is a compact connected Lie group, there exists a sub-
differential algebra of bi-invariant forms, ΩI(G), inside the de Rham algebra
ADR(G), such that the canonical inclusion ΩI(G) ↪→ ADR(G) induces an
isomorphism in cohomology. This is the prototype of the process for models:
namely, we look for a simplification MM of the de Rham algebra with an
explicit differential morphism MM → ADR(M) inducing an isomorphism
in cohomology, exactly as bi-invariant forms do in the case of a compact
connected Lie group.

The first question is, can one build such a model for any manifold? The
answer is yes for connected manifolds and in fact, there are many ways to do
this. So, we have to define a standard way, which is called minimal, which
means that the differentials of elements of V have no linear terms. Once we
have this minimal model (which is unique up to isomorphism), we may ask
what geometrical invariants can be detected in it. In fact, there is a functor
from algebra to geometry that, together with forms, creates a dictionary
between the algebraic and the geometrical worlds. But for this we have to
work over the rationals and not over the reals. As a consequence, we have to
replace the de Rham algebra by other types of forms. This new construction
is very similar to the de Rham algebra and allows the extension of the usual
theory from manifolds to simplicial sets (or topological spaces), which is a
great advantage. Denote by APL(X) this analogue of the de Rham algebra for
a simplicial set X. Since the minimal model construction also works perfectly
well over Q, we have the notion of a minimal model MX → APL(X) of a
path connected space X.

Conversely, from a cdga (A, d) we have a topological realization 〈(A, d)〉
and if we apply this realization to a minimal model MX of a space X
(which is nilpotent with finite Betti numbers), then we get a continuous map
X → 〈MX〉 which induces an isomorphism in rational cohomology. The
space 〈MX〉 is what, in homotopy theory, is called a rationalization of X.
What must be emphasized in this process is the ability to create topological
realizations of any algebraic constructions.

Hence, Sullivan’s theory can be seen as a rational version of classical
differential geometry. However, other algebraizations of rational homotopy
type exist. They can take different forms and the first work in this direction
historically was done by D. Quillen using differential graded Lie algebras
(dgl). In [Qui69], Quillen defined a functor λ from the category of 2-reduced
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simplicial sets to the category of dgl’s. Moreover, any dgl has a realization as
a simplicial set. Hence, here also any algebraic construction has a topological
meaning. These two presentations are linked through the following non-
commutative diagram,

DGA

CDGA CDGC
]oo L //

DGLC
oo

U
OO

Simplicial Sets,

AAH

dd

λ

OO

APL

ff

where, – “Simplicial Sets” means the category of 2-reduced simplicial sets,
of finite type, – CDGA, CDGC, DGL, DGA are categories of commutative
differential algebras, cocommutative differential coalgebras, differential Lie
algebras or differential graded algebras, over the rationals.

The functors λ, L, C were introduced by Quillen in [Qui69]); the functor
APL is the previous functor of piecewise linear forms of Sullivan, [Sul77].
Therefore we have two approaches to the algebraization of the rational ho-
motopy type, one with cdga’s and the other with Lie objects. In fact, as
Majewski proved in [Maj00], they are equivalent: if X ∈ Simplicial Sets, the
minimal models associated to APL(X) and ](C(λ(X))) are isomorphic.

The functor AAH is a sort of natural version of the Adams-Hilton model
(introduced in [AH56] over the ring of the integers) built on the cobar-chain
functor. By extending the structure with diagonal approximations, D. Anick
([Ani89]) proved that a Lie model can be built from it. Moreover this enriched
model is an intermediate step in the equivalence of Majewski and the three
algebraizations are equivalent.

There is also a fourth algebraic construction linked to the above, the
complex of iterated integrals introduced by K. T. Chen, see [Che73]. This
complex can be connected with the Hochschild complex and this will be made
precise in Talk 17.

Several monographs are devoted to these theories: [BG76], [FHT01],
[FOT08], [GM81], [Hai84]. [Maj00], [Tan83].

Such theories beg for applications and examples and it is possible to de-
scribe models for spheres, homogeneous spaces, biquotients, nilmanifolds,
symplectic blow-ups and the free loop space. These models have geometrical
applications, for instance, to complex and symplectic manifolds, the closed
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geodesic problem, curvature questions, actions of tori and the Chas-Sullivan
loop product. The focus of this Arbeitsgemeinschaft is the relationship be-
tween Rational Homotopy Theory and Geometry with a natural extension
to Physics via string topology. As such, the Arbeitsgemeinschaft will be of
interest to geometers and topologists whose interests lie in the often murky
world between these two subjects.

Talks:

There will be two survey talks given by experts in rational homotopy and
in geometry. Talk 1, Fundamentals of Geometry, will be given by Wilderich
Tuschmann and Talk 18, Differential Modules and Applications, will be given
by Yves Félix. All other talks need volunteers.

1. Fundamentals of Geometry
This talk should introduce basic topics of geometry In particular, sec-
tional curvature should be defined and various results and questions
concerning it should be surveyed, including the consequences of assum-
ing nonpositive, nonnegative or positive sectional curvature. For exam-
ple, results about finiteness of the number of homeomorphism or diffeo-
morphism types under sectional curvature (as well as volume or diame-
ter) hypotheses should be discussed and Bott’s conjecture that nonneg-
ative sectional curvature implies ellipticity could be mentioned. Ref-
erences are: [Pet98, dC92, BC64, Gro03, Zil07, Fuk06, Tus02, Gro09,
Wil07, PT99, Gro81, Esc82, KPT10, Wil07], [FOT08, Chapter 6].

2. Sullivan models
This talk presents the fundamental algebraic topological tool for study-
ing rational homotopy type, the Sullivan model. The basic ideas will
be illustrated by considering a toolkit of geometrical examples used in
later expositions: Lie Groups, Homogeneous Spaces and Biquotients.
For coherence with later talks, this talk must contain:

• Models of Lie groups, homogeneous spaces, principal G-bundles;
see for instance [FOT08, Pages 71 and 83-84].

• Models of biquotients, introduced and studied in [Esc92], [Sin93],
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[KZ04]. (See also [FOT08, Page 137] for the construction of their
models and explicit examples.)

• Models of nilmanifolds, see [FOT08, Page 118].

3. Group Actions
This talk will survey various interactions between group actions and
rational homotopy theory. These interactions arise in many geometric
contexts. Specific topics that will be discussed include: the equivariant
minimal model for finite group actions (to be used for the discussion
on A-invariant geodesics), the Borel construction and its model, the
toral rank rk0(X) and the basic homotopy Euler characteristic bound
rk0(X) ≤ −χπ(X), Halperin’s toral rank conjecture and Hamiltonian
actions in symplectic geometry. References are: [Tri78, Opr84, AH78,
AP86, Hal85, Rau98, Hsi75, AP93, JL04, CJ97, DS88, AB84, LM03,
All98, Stȩ08], [FOT08, Chapters 3 & 7].

4. Geodesics and the Free Loop Space I
This talk introduces geodesics and briefly surveys known results which
lead to a connection with rational homotopy theory. For instance, top-
ics can include the proof in 1898 by Hadamard that each nontrivial
conjugacy class of π1(M) contains a closed geodesic that is the short-
est closed curve representing an element in the conjugacy class. In
1951, Lusternik and Fet proved that each compact Riemannian mani-
fold contains at least one closed geodesic. Also, the description of closed
geodesics as critical points of the energy functional on the analytic free
loop space should be given leading to a topological study of the free loop
space LM := MS1

later. The link to rational homotopy then comes
from the fundamental Gromoll-Meyer theorem which will be a focus of
this lecture. The Theorem relates the growth of the Betti numbers of
the free loop space to the The Closed Geodesic Problem: Does every
compact Riemannian manifold M of dimension at least two admit in-
finitely many geometrically distinct geodesics? In fact, by work of Gro-
mov, the number of distinct geodesics (for certain metrics and under a
length constraint) is bounded below by Betti numbers. References are:
[dC92, Pet98, BC64, Bot82, LF51, Kli78, GM69, Gro73, LS34, Gro78,
BZ82, BH84, Ban93, Fra92, Hin93, GH09], [FOT08, Chapter 5].
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5. Geodesics and the Free Loop Space II
This talk will describe the model for the free loop space and prove
the Sullivan-Vigué Poirrier theorem that a compact simply connected
Riemannian manifold whose rational cohomology algebra requires at
least two generators has infinitely many geometrically distinct closed
geodesics. This then solves the Closed Geodesic Problem for a large
class of spaces. A geodesic γ(t) is called A-invariant for an isometry
A if there exists some T ∈ R such that γ(t + T ) = A(γ(t)) for all
t ∈ R. For example, on the sphere S2 with the usual metric and for
the antipodal map A, the great circles are A-invariant geodesics. When
M is a flat torus and A is the involution A(x, y) = (y, x) then the A-
invariant geodesics are the lines in the square [0, 1]2 that are parallel to
the ascending diagonal. This talk will also give analogues of the results
surrounding the Closed Geodesic Problem for A-invariant geodesics.
In particular, analogues of the free loop space (and its model), of the
Gromoll-Meyer Theorem (Tanaka’s Theorem) and of the Sullivan-Vigué
Poirrier Theorem will be discussed. References are [VPS76, GH82,
GH82, Gro73, Gro74, GHVP78, Tan82], [FOT08, Chapter 5].

6. Geodesic Flows
Let Mn be a closed smooth n-manifold. The geodesic flow on M is
a flow φ : SM × R → SM on the sphere bundle SM associated to
the tangent bundle TM given by φt(x, v) = φ(x, v, t) = (γv(t), γ̇v(t)),
where v is a unit tangent vector at x ∈ M and γv is the unique unit
speed geodesic on M starting at x in the direction v. The topological
entropy of the flow φ, htop(φ), is a quantity that measures the com-
plexity of a flow and because the geodesic flow depends only on the
Riemannian metric g, the topological entropy htop(φ) of the geodesic
flow φ associated to g is denoted by htop(g). This talk is devoted to an
exposition of the fundamental result of Gabriel Paternain: If (M, g) is
a simply connected closed Riemannian manifold with htop(g) = 0, then
M is rationally elliptic. In particular, if the geodesic flow is completely
integrable as a Hamiltonian system and has periodic integrals, then M
is elliptic. References are: [Pat99, Pat92, PP94], [FOT08, Chapter 5].

7. Formality and Kähler Manifolds
This property is one of the first important applications of Sullivan’s
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theory. The existence of a Kähler metric on a compact manifold M
imposes strong constraints on the homotopy type of M . For instance,
the even Betti numbers of M are nonzero and the odd Betti numbers
of M are even (this is a consequence of the Hard Lefschetz property).
In [DGMS75], the four authors prove that the rational homotopy type
is also very special: a compact Kähler manifold is a formal space. (As
a consequence, the only nilmanifolds that admit a Kähler metric are
tori.) This talk should give the definition of formality [FOT08, Page 92]
and the characterization of formal nilmanifolds, as done by Hasegawa
[Has89] or [FOT08, Page 120]. The proof of formality for Kähler man-
ifolds uses an interesting trick, called the ∂∂-Lemma and this should
be given. An alternative proof is given in [BG88], where the authors
use another feature of compact Kähler manifold, the Hard Lefschetz
property. In [Bla56], Blanchard noticed that the Hard Lefschetz prop-
erty implies the vanishing of the derivations of negative degree in the
cohomology of M and used it to study the degeneracy of the Serre
spectral sequence of fibrations whose fibre has cohomology satisfying
the Hard Lefschetz property. A summary of these properties and the
proofs of the main results are recalled in [FOT08, Section 4.2.3]. The
talk should also contain the proof of Blanchard’s result on derivations.
This will be related to concrete curvature questions in the second talk
on curvature.

8. Spectral Sequences and Models
There is a synergy between models and spectral sequences. Spectral
sequences arise naturally from the structure of models, as for instance
the odd spectral sequence in the study of the cohomology algebra of
homogeneous spaces G/T with T a maximal torus. But also, a model
built from the r-stage of a particular spectral sequence coming from
a cdga (A, d) can be deformed in a model of (A, d) itself ([FOT08,
Theorem 4.56], [HT90]). This deformation carries with it new informa-
tion as is illustrated by the filtered model ([FOT08, Definition 4.56],
[HS79]) and by the Frölicher spectral sequence and the Dolbeault model
of complex manifolds ([FOT08, Sections 4.3 and 4.4], [NT78], [Tan94],
[Pit89], [Pit88]). This talk will center on these examples of the interplay
between spectral sequences and models.
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9. Formality and Symplectic Manifolds I
As symplectic geometry and topology developed in the 70’s and 80’s,
a typical approach to understanding the qualities of symplectic mani-
folds was to compare them to Kähler manifolds. Indeed, the first ques-
tion asked was whether every compact symplectic manifold is Kähler.
Thurston provided the first counterexample, a 4-dimensional nilman-
ifold (which, in fact, had been known to Kodaira). It proved to be
much harder to see that simply-connected symplectic manifolds were
not always Kähler and this relied on the fact that the cohomology of
a Kähler manifold satisfies the Hard Lefschetz property. Since Kähler
manifolds are formal spaces, the question arose whether this was also
the case for symplectic manifolds. This question has elicited a tremen-
dous amount of work. This talk will survey the relationships among the
qualities of being symplectic, obeying the Hard Lefschetz property and
being formal. Besides basic results such as the Kodaira-Thurston mani-
fold, the formality of simply-connected symplectic homogeneous spaces
and Massey products in symplectic manifolds, the work of Fernandez,
Munoz and Cavalcanti on the relation of the Hard Lefschetz property
to formality may be mentioned. References are: [McD84, PS09, LO94,
RT00, TO97, BT00, Cav07a, CFM08, BT98, Mer98], [FOT08, Chapter
4].

10. Formality and Symplectic Manifolds II
McDuff’s example of a simply connected symplectic non-Kähler mani-
fold was constructed via a symplectic blow-up and this type of construc-
tion has contributed greatly to our understanding of the differences
between symplectic and Kähler manifolds. Babenko and Taimanov
first analyzed the blow-up from the Massey product point of view
and showed that non-formal symplectic manifolds existed. Lambrechts
and Stanley later analyzed the rational homotopy type of the symplec-
tic blow-up in detail and their model gives a clear picture of Massey
product existence and the models that accompany this analysis form
the main topic of this talk. This then will allow a model analy-
sis of the McDuff example in terms of its non-formality. If time al-
lows, the Fernandez, Munoz and Cavalcanti blow-up examples of com-
pact simply connected symplectic manifolds which satisfy Hard Lef-
schetz, but which are non-formal may be discussed. References are:
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[LS08b, LS05, Cav07b, FM08, FM05, CFM08, Mer98], [FOT08, Chap-
ter 8; pp. 318-327 and 330-339]

11. Curvature I
As mentioned in the Fundamentals of Geometry talk, it is often the case
that bounds on sectional curvature lead to finiteness of the number of
diffeomorphism types of manifolds satisfying them. Similar questions
can be asked about rational homotopy types with a view toward a
better understanding of the boundary between geometry and topol-
ogy. With this in mind, let M≤D

κ≤sec≤λ(n) denote the class of closed n-
manifolds with sectional curvature and diameter obeying κ ≤ sec ≤ λ
and diam ≤ D. Karsten Grove asked the following question: Does
the sub-class of M≤D

κ≤sec≤λ(n) consisting of simply connected manifolds
contain finitely many rational homotopy types? This question was an-
swered in the negative by Fang and Rong as well as Totaro. This
talk will focus on the Fang-Rong approach since it uses rational ho-
motopy theory in a paradigmatic way. Namely, Fang and Rong create
the right algebra to answer the question and then realize the alge-
bra geometrically by using minimal models and basic geometric results
of Eschenburg. If time allows, the approach of Totaro may be dis-
cussed. This uses biquotients to construct manifolds with the right
curvature properties and then shows that a sufficient number of these
also have the right algebra to answer the question. References are:
[FR01, Tot03, Esc82, Ron95, Gro81, Wil07], [FOT08, Chapter 6].

12. Curvature II
Consider the following question: Given a vector bundle Rn → E → M ,
where M is a closed manifold with nonnegative sectional curvature,
does E admit a metric with nonnegative sectional curvature? Ozäydin
and Walschap answered the question negatively by giving the first ex-
amples of vector bundles over compact nonnegatively curved manifolds
(in fact, oriented R2-vector bundles over T 2) whose total spaces have
no metrics of nonnegative curvature. A more general approach was ini-
tiated by Belegradek and Kapovitch using rational methods to give an
obstruction called splitting rigidity to the existence of such a metric on
the total space of a vector bundle. The main applications come when
splitting rigidity is shown to follow from the vanishing of negative-
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degree cohomology derivations — the famous result of Blanchard for
Kähler manifolds. This talk should introduce the general problem of
finding nonnegative curvature metrics on total spaces of bundles and
then focus on the Belegradek-Kapovitch approach. References are:
[BK01, BK03, PW06, ÖW94, CG72, Wil07], [FOT08, Chapter 6].

13. Poincaré Duality and Models I. (Realization of a model whose co-
homology satisfies Poincaré duality.) Let X be a simply connected
rational space. The two talks on Poincaré duality address the ques-
tion of whether X contains a manifold in its rational homotopy type if
its cohomology algebra H∗(X;Q) satisfies Poincaré duality. This first
talk discusses a theorem of Barge [Bar76] and Sullivan [Sul77] giving
conditions under which the existence of manifolds in the rational homo-
topy type of an n-dimensional Poincaré space X is assured. If n 6= 4k,
the answer is always positive. If n = 4k, some conditions are required
involving the signature of the quadratic form on H2k. Roughly, this
result can be stated as follows: conditions that are necessary for the
realization of the model of X by a closed manifold are also sufficient.
A recent nice account of the simply connected case and an extension
to the non-simply connected case has been given in [Su09].

14. Poincaré Duality and Models II
A model which satisfies Poincaré duality. This second talk on duality
addresses the situation that, in a certain sense, is the reverse of that
discussed in the first talk. More precisely, if M is an n-dimensional
closed simply connected manifold, does there exist a finite dimensional
commutative differential graded algebra (A, d) which satisfies Poincaré
duality at the cochain level and which is connected to the Sullivan
model of M by a quasi-isomorphism? Such a model was conjectured
some years ago by S. Halperin. A result related to this question was
obtained by J. Stasheff [Sta83] which proves that the rational homotopy
type of M is determined by its (n− 1)-skeleton (see also [Umb89] and
[AHL]). The final positive answer was given by P. Lambrechts and
D. Stanley [LS08a]. Applications to the rational homotopy type of
configuration spaces of two points [LS04] can also be considered in this
talk.
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15. String Topology I
In [CS99], Chas and Sullivan defined a loop product whose construction
can be sketched as follows. Let M be a compact closed oriented n-
dimensional manifold. Observe first that, if LM is the free loop space
on M , composition of loops can be done on the subspace LM ×M LM
consisting of pairs of loops based at the same point; this means we have
a composition map cM : LM×M LM → LM . Recall now that if P is of
dimension q and P ↪→ M is an embedding of closed oriented manifolds,
then there is an umkehr map

Hq(M) ∼= Hn−k(M)
i∗ // Hn−k(P ) ∼= Hk+q−n(P )

where the two isomorphisms are Poincaré duality. Chas and Sullivan
observe that a tubular neighborhood of the inclusion ι : LM×M LM →
LM × LM can be obtained by pulling-back a tubular neighborhood
of the diagonal ∆: M → M × M and they obtain an umkehr map
ι! : H∗(LM ×LM) → H∗−n(LM ×M LM). By definition, the loop prod-
uct is the composition (cM) ◦ ι! : H∗(LM × LM) → H∗−n(LM). By
re-grading, H∗(LM) := H∗+n(LM), the vector space H∗(LM) acquires
the structure of an associative, commutative graded algebra. Moreover,
from this product, Chas and Sullivan define a bracket on the (desus-
pended) equivariant homology of LM , HS1

∗ := H∗+n(ES1 ×S1 LM).
These structures are invariant by a homotopy equivalence between two
smooth and closed manifolds which is orientation-preserving [CKS08].
The development of properties needs a cochain representative and this
is done in different forms in several papers, [CS99], [Mer04], [CJ02],
[McC06], [Laz08], [Tam09].... This list is not exhaustive; a global
overview is contained in the notes of lectures given by R. Cohen and
A. Voronov [CV06]; see also [Sul07]. The first talk should be devoted
to the five first sections of [FTVP07] whose paradigm is a dual version
of the loop product and string bracket in terms of cdga’s over Q, with
explicit examples of computation.

16. String Topology II
The previous products and brackets give rise to rich structures such
as Gerstenhaber and Batalin-Vilkovisky algebras. This second talk
is devoted to their definition and construction on chain models as is
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described in [Che07], for instance. Related papers are [CS04, FMT05,
Men04, CT07, FT08, Tra08, Tra02, VG95].

17. Chen’s Iterated Integrals and higher Hochschild chain com-
plex
K. T. Chen’s theory of iterated integrals is a geometric way to obtain
information about the rational homotopy type of manifolds and sim-
plicial sets. In particular, this point of view is well-suited to the study
of spaces of loops, see [Che73] or [Mer04]. This talk is concerned with
a generalization to the higher Hochschild chain complex (introduced in
[Pir00]) as it appears in Section 2 of [GTZ10].

18. Differential Modules and Applications
Many results of rational homotopy are using the notion of differential
modules over a cdga. This talk will present basic definitions and prop-
erties of these modules and give illustrations of their use in Geometry
and Topology.
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Sullivan, Lecture Notes in Mathematics, vol. 1025, Springer-
Verlag, Berlin, 1983. MR 764769 (86b:55010)

[Tan94] , Modèle de Dolbeault et fibré holomorphe, J. Pure Appl.
Algebra 91 (1994), no. 1-3, 333–345. MR 1255937 (94k:55018)

[TO97] Aleksy Tralle and John Oprea, Symplectic manifolds with no
Kähler structure, Lecture Notes in Mathematics, vol. 1661,
Springer-Verlag, Berlin, 1997. MR 1465676 (98k:53038)

[Tot03] Burt Totaro, Curvature, diameter, and quotient manifolds, Math.
Res. Lett. 10 (2003), no. 2-3, 191–203.

[Tra02] Thomas Tradler, Poincare duality induces a BV-structure on
Hochschild cohomology, ProQuest LLC, Ann Arbor, MI, 2002,
Thesis (Ph.D.)–City University of New York. MR 2703798

[Tra08] , The Batalin-Vilkovisky algebra on Hochschild cohomol-
ogy induced by infinity inner products, Ann. Inst. Fourier (Greno-
ble) 58 (2008), no. 7, 2351–2379. MR 2498354 (2010a:16020)
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