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Abstract. The construction and mathematical analysis of numerical me th-
ods for PDEs is a fundamental area of modern applied mathemat ics. Among
the various techniques that have been proposed in the past, s ome { in par-
ticular, nite element methods, { have been exceptionally s uccessful in a
range of applications. There are however a number of importa nt challenges
that remain, including the optimal adaptive nite element a pproximation of
solutions to transport-dominated di usion problems, the e  cient numerical
approximation of parametrized families of PDEs, and the ec  ient numerical
approximation of high-dimensional partial dierential eq  uations (that arise
from stochastic analysis and statistical physics, for exam ple, in the form of a
backward Kolmogorov equation, which, unlike its formal adj  oint, the forward
Kolmogorov equation, is not in divergence form, and therefo re not directly
amenable to nite element approximation, even when the spat ial dimension
is low). In recent years several original and conceptionall y new ideas have
emerged in order to tackle these open problems.

The goal of this workshop was to discuss and compare a number o f novel
approaches, to study their potential and applicability, an  d to formulate the
strategic goals and directions of research in this eld fort he next ve years.

Mathematics Subject Classi cation (2010):  35C20, 41A25, 41A65, 42C40, 65N12, 65T60, 65F20.
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Introduction by the Organisers

The workshop New Discretization Methods for the Numerical Approximation of
PDEs was organized by Stephan Dahlke (Marburg), Gitta Kutyniok (Berlin ), En-
dre Suli (Oxford), and Rob Stevenson (Amsterdam). This meeting was attended
by 51 participants from 11 countries.

Numerical approximation of PDEs is one of the central areas of computational
mathematics, stimulated by the multitude of applications of PDEs in mathemat-
ical models in the sciences, engineering and economics. There is a riarsenal
of numerical techniques for PDEs, including nite di erence methods, nite ele-
ment methods, nite volume methods, spectral methods, and waelet methods,
to name just a few. The nite element method (FEM), in particular, h as been
successfully applied to linear and nonlinear PDEs in, typically, conserative form,
that arise in continuum mechanics, such as the fundamental partié di erential
equations of solid and uid mechanics. Some of the noteworthy feaires of -
nite element methods include their applicability to a wide class of problens, their
convenience in terms of the use of locally re ned computational grid and local
variation of the polynomial degree in the nite element space (as inh-version and
(h; p)-version adaptive FEMs), and their exibility in representing compu tational
domains possessing complicated geometries. By now, powerful sedfre packages
based on nite element methods have been developed and it is fair toay that the
theory of FEMs is an established and mature eld of numerical analyss. While
it is expected that the range of applications of FEMs will continue to grow (a
recent active area being, for example, the development and matimeatical analysis
of FEMs for geometric PDEs and PDEs on manifolds), it seems uncleawhether
ground-breaking new theoretical contributions are likely to emerge in the subject.

Contemplating scienti ¢ challenges that have arisen in recent yearsit is pos-
sible to identify problem classes for which the performance of existig numerical
techniques (and nite element methods in particular) is not entirely satisfactory.
These include PDEs whose solutions develop singularities along loweirdensional
manifolds (e.g. blow-up phenomena in combustion problems and in kinét models
of chemotaxis (Keller{Segel system)), nonlinear hyperbolic congeation laws, for
which smooth initial data can evolve into solutions that contain discortinuities
(shocks and contact discontinuities), and transport-dominateddi usion equations
whose solutions exhibit thin internal and boundary layers. One of tre key open
guestions is in particular whether an adaptive nite element approximation of an
elliptic or parabolic transport-dominated di usion equation realizes the conver-
gence rate that could be obtained with the best possible partition fom the class
of all partitions generated by, say, the newest vertex bisection ¢chnique; as a mat-
ter of fact, the convergence rate that could be obtained even wtt the best possible
partition is unlikely to be \optimal” for such equations because of the loss of regu-
larity of the analytical solution (in the scale of Besov spaces relevanfor isotropic
approximations) in the limit of the Reclet number tending to + 1 . Consequently,
\anisotropic re nement" techniques will be needed in order to achieve the rate
that is \optimal" for a given polynomial degree used in the nite element space.
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Recently, several original and conceptionally novel ideas have baeproposed
whose potentials and scope of applicability are still being investigated Among
those are (adaptive) numerical schemes based on anisotropic atg functions,
mixed dictionaries/frames or tensor wavelets. Other exemplary clases are low-
rank tensor techniques for high-dimensional PDEs, schemes bas®n compressed
sensing, meshless methods, and reduced-basis methods. The méacus of this
workshop was to investigate the potentials of these newly develomkdiscretization
schemes and to identify and manifest promising future research dactions in the
eld.

The workshop featured 36 talks, thereof 11 longer overview talks Some high-
lights of the presentations include:

Reduced basis methods: Wolfgang Dahmen reported on a double greedy
algorithm for solving radiative transfer problems. To reduce the dimension
of the problem, the angular variables are treated as parametersand the
solution manifold is approximated by the reduced basis method. The »
pansion coe cients in this basis are determined by solving stable Petov-
Galerkin problems in the reduced space. The test spaces are geasxd
through an interior greedy loop.

Low rank tensors: Reinhold Schneider gave an overview of low rank
tensor techniques for the numerical solution of high dimensional PEs.
The recently introduced Hierarchical Tucker tensor formats and Tensor
Trains o er stable and robust approximations at low cost. Approxim ations
in those formats can be found by applying matrix low rank factorisation
techniques (SVD).

Entropy-stable nite di erence schemes: Eitan Tadmor's lecture fo-
cussed on the importance of entropy stability in the dynamics of nofinear
systems of conservation laws and related convection-di usion ecptions.
He presented a general theory of entropy stability for di erenceapproxi-
mations of such nonlinear partial di erential equations, and illustra ted the
general theory through a range of rst- and second-order aagrate nite
di erence schemes for a variety of scalar problems as well as enfpy stable
schemes for the Euler and Navier{Stokes equations. Recent corafations
of entropy-measure-valued solutions based on a class of arbitridy high
order accurate and entropy stable TeCNO schemes were also show
Ridgelet and shearlet based discretisations for transport prob-
lems and wave propagation:  Philipp Grohs presented a ridgelet-based
discretization of the kinetic transport equation.Using either a sparse collo-
cation approach in the transport direction, or a tensor product construc-
tion, the system was solved in optimal complexity, even in the presece of
line singularities in the solution.

The numerical solution of inverse scattering problems was discusddyy
Philipp Petersen. In the two-dimensional case, scatterers can benodeled
by curves. These curves have optimally sparse representations shearlet
systems. This suggests to solving the inverse problem with a spargit
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promoting Tikhonov regularization term. The approach generalizesto
certain linearized inverse problems.

The organizers would like to take the opportunity to thank MFO for p roviding
support and a very inspiring environment for the workshop. The mayic of the place
(as coined by one of the participants) and the pleasant atmospher contributed
greatly to the success of the workshop.

Acknowledgement:The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, \US Junior Oberwolfa® Fellows".
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Abstracts

Reduced basis techniques for multiscale methods
Assyr Abdulle

In this report, we consider reduced basis numerical homogenizatiomethods for
the numerical solution of multiscale partial di erential equations (PDES) in a do-
main 2 RY 1 d 3. We will consider two classes of multiscale PDEs. First
we consider quzasilinear problems: nduSZZ Ha() such that

(1) a*(x;uf)r u® r wdx = fwdx 8w2Hg() ;

where f 2 L?(), a'{k;u)is ad d tensor of Caratteodory type, uniformly
elliptic and bounded. Second, we consider Stokes problems in poronsedia: nd
(vE&;pY'2 (H3( H? L?( DFR such that

z

() a(v5w) + b(w;p"y

b(v o) 0 8g2 L% pFR;

wheref 2 (L?()) 9 a(v;w) = R rv:rwdx;, b(v;q = R q(r v)dx. The
multiscale nature of the above PDEs has di erent sources. For thequasilinear
problems, the tensora®(x; u®) oscillates over a small length scale. For the Stokes
problems, the presence of pore structures (solid pgrts) of size makes the uid
domain highly heterogeneous. Precisely = N ;40,7 (X+ ' (Ys; X)),
where Ys is a reference solid domain Y with Y = ( 1=2;1=2)4 and ' (:;X) :
Y ! Y is a homeomorphism such that ( ;x)jay is an identity for every x 2 .
Homogenization.  For both problems described above, a direct application of a
nite element method (FEM) is computationally prohibitive as such a method
needs a mesh sizédn < to converge. However, in many applications one is
interested in the macroscale behavior of the solution. Such e ectie equations
have been derived for the considered problems. They involve a maascale partial
di erential operator. Under suitable assumptions on the data of the problem, it
is possible to show that the family of micro solutions converge (usuallyn a weak
sense, up to a subsequence extraction) towards the solution ohé macroscale
problem. Forél) the homogenized prZobIem reads [11] : ndu 2 H}() such that

f wdx 8w 2 (H}( )%

(3) a(x;u)r u rwdx= fwdx; 8w2H;() :

The e ective equation is of the same type as the microscopic equatim but the
oscillating tensor has been replaced by an averagedindependent tensor. For (2)
the homogenized problem reads [15, 10]: ngp 2 H() =R such that

Z z

(4) ax)rp rgdx= a(x)f rqdx; 8qg2H?) =R;
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wherea(x) isad d conductivity tensor. The e ective problem is of Darcy type,
the domain does not contain \pore scales" anymore (it has been \hmogenized").
For both problems, under suitable assumptions on the oscillatory dé&a (respec-
tively the pore structure), the e ective conductivity tensor is re covered at a given
point x 2 by solving \micro problems" (PDEs involving the original multiscale
problem in a unit reference domain wherex enters as a parameter).
A brief description of a numerical homogenization method. Given the
problems (1) or (2), the goal is to nd a numerical approximation of (3) or (4)
involving a priori unknown homogenized coe cients (a(x; u); or a(x) for our prob-
lems). We describe the nite element heterogeneous multiscale metd (FE-HMM)
[3, 1, 13] (see [4, 7] for an analysis of problems (1),(2)). It relies on

1. A macroscopic FE solver for the e ective (homogenized) problemwith a
priori unknown data fah(XK'j;U(XK,j))gj-le (quasilinear problem), fah(XK,j)ng:]_
(Stokes problem), de ned on quadrature pointsxXk j on each macro elemenK of
a macroscopic partition Ty of ;

2. A microscopic FE solver for \micro" problems based on the di erertial

operators (1) or (2) with right-hand side involving the unit vectors fes;:::;eqgin
RY on sampling domainskK 5 = Xk,jt ( 1=2 1=2)¢:; ; the outcome of this
step ared FE solutions j(K;j ;i =1;:::,d for each quadrature point Xk ; of each

elementK 2 Ty (for the Stokes micro problems each micro function is a couple
of velocity-pressure solutions).

3. A data recovery process in which the e ective dataah(xK,j ;U(XK,j)), respec-
tively a"(xk j), at the point xx j are computed using a suitable average involving
the ne scale functions ;K;j ;i=1;:::;din eachKy (for the Stokes problem only

the micro velocity (vector) solution enter in the computation of a"(x j)).
Reduced basis techniques for numerical homogenization . The main com-
putational cost of the FE-HMM comes from the repeated solutionsof micro prob-
lems around macro quadrature points. One can thus ask if the maascopic de-
pendence of the micro solutions could be \interpolated” in an appropiate way
and if a reduced number of micro solutions could be precomputed andsed to
compute the e ective data at the required quadrature nodes of he macro solver.
This question has been addressed for numerical homogenization imé framework
of the reduced basis (RB) method [12, 2, 5].

Observe that the e ective data computed in the FE-HMM are parameter depen-
dent. For Problem (1) the e ective data depend onx 2 ; on the force eld of the

value of the unknown (numerically) homogenized solution itself (chep upper and
lower bounds Liow; Uup] are available for this solution). For Problem (4) the e ec-
tive data depend on a set of geometrical parameters (1(x);:::; p(x)) 2D RA

A greedy algorithm allows to select (thanks to suitable a posteriori eror esti-
mators) among this parameter space arN dimensional set of the parameters for
which the corresponding micro functions di er most (measured in a Hibert norm
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corresponding to the PDE). For many problemsN turns out to be small. The cor-
respondingN dimensional set of micro functions accurately computed span the
reduced basis space. A separation between microscopic variablesdaparameters
variables (either in the tensor for (1) or in the geometry for (4)), called an a ne
representation is crucial for the e ciency of the Greedy procedue (appropriate
interpolation procedures [14] can be applied if this requirement is nosatis ed). In
an online stage, the precomputed basis (set once for all) is used até¢ macroscopic
guadrature point to compute the actual value of the e ective data. Thanks to the
a ne representation this amounts to solve (small) N N linear system (essentially
pre-assembled in the o ine stage).

A priori error estimates in terms of macro, micro, modeling and redwed basis
errors have been derived for the RB-FE-HMM applied to Problems (3 in [6]. An
adaptive FE-HMM method for Problem (2) has been analyzed in [7] andreduced
basis approximations have been presented in [8, 9].
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Kolmogorov widths and low-rank approximations of parametr ic
elliptic PDEs

Markus Bachmayr
(joint work with Albert Cohen)

We consider parametric di usion equations
divy a(;y)r u(xyy) =f(x); x2D R™ y2U:=[ 1;1]%

with m;d 2 N, where the coe cient a has the forma(x;y) = a(x) P ?:1 yi i(x)
and is assumed to satisfy a uniform ellipticity assumption, that is, there exist
O<r RsuchthatO<r a(x;y) R<1 forx2D andy 2 U. The weak
form of this problem onV := H}(D) reads

xd
A yiAi u(y) = f;

i=1

wheref 2 V0and A;Ai: V! VO i=1;:::;d, are de ned by

Z Z
hAu; Vi = aru r vdx; DbAju;vi = iru r vdx; uvayVv:
D D
Our aim is to study the performance of low-rank approximations ofu of the
form

xXn
1) Vk(X) k() ;
k=1

where the vy and  can be chosen arbitrarily to minimize the error for eachn.

Approximations of the type (1) are used implicitly in reduced basis or POD
methods and constructed explicitly in methods based on more genat tensor de-
compositions. In all of these approaches, it is of crucial importane that the
required number of termsn does not increase too rapidly with a decreasing error
tolerance in approximating u. In the reduced basis context, where one is generally
interested in uniform error estimates, the relevant measure for asessing the speed
of convergence of (1) towardsu is the Kolmogorov n-width of u(U) V, which is
de ned for n 2 N by

dn u(U) ,, == inf sup minku(y) wky ;
dim( W)=n y2U w2W

where we consideu as a mapy 7! u(y) from U to V. The rank of g v 2 L2(U;V)
is de ned as the rank of the induced Hilbert-Schmidt operator’ 7!, v(y)"' (y) dy
from L2(U) to V.

First upper bounds for the n-widths can be obtained from polynomial expan-
sions [1, 2], where the functions g are selected from a given basis of tensor prod-
uct polynomials. However, if the problem has additional structure,one can obtain
stronger decay ofn-widths when allowing arbitrary .
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We consider in particular the case of coe cients that are piecewise onstant on

(2) a=1; j = D ;

fora xed 2 (0;1). A simple example of improved bounds under this struc-
tural assumption is the one-dimensional casd = (0;1) with a partition into d
subintervals, where one easily nds that ranku) 2d 1.

Our further considerations are based on a Neumann series expans of u with
the partial sums

X< xd . =
3) uk(y) = Yi(A “A;)) A °f;
=0 i=1

which satisfy ku ukk C K. Expanding and grouping terms corresponding to
the same multinomials one nds that the uk are in fact partial sums up to xed
total degrees of the Taylor expansion ofu [2], and counting terms one obtains the
generic estimate

do u(U) , Ce °”
for the n-widths, which is a consequence of the analyticity ofu with respect to y.
This estimate can be improved under a further assumption that is in mrticular
implied by (2).
Proposition 1. If ?:1 A; = A, then for each k, there exist v V and d-

variate polynomials k7 =1;:::;n(k) = kgdll , such that for ux as in (3) we
haveuk(y) = 1 k) vmand consequently,dy u(U) , Ce ¢ ° 7

Under a fairly general additional condition, we thus only obtain a reduction
in the n-widths that weakens for larged. However, substantially stronger results
can be obtained under more specialized further assumptigus. To ik end, we rst

describe a reduction to a problem on the skeleton := ?:1 @D n @Dof the
partition, where we de ne V as the space of trace values on of functions in
V = HY(D).

Denoting by E the harmonic extension operator fromV to V, we de ne the
Steklov-Poincae operatorsS;: V. ! VO i=1;:::;d,andS:V | VO as well as
the projected right hand side ", by

Z xd Z
Sijv ;w i := reEv r Ew dx; S:= Si: h";\v = fEv dx;
D i=1 D
forv ;w 2 V . We obtain a Neumann series representation on with partial
sums oy
[
Uk, (y):= yi( S 'Si) S
=0 i=1

which converge inL! (U;V ) to the projection of u onto EV . Since the component
of u in the complement of EV in V is of rank at most d, one has rank(y)
rank(ux, )+ d, and thus the problem is reduced to estimating rank(y, ).
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We consider this in detail in the case ofD = ( 3;1)? and d = 4 with the

two-by-two checkerboard partition

4 Di= L0%D,= 003  L0;D3= %0 01;Ds= 017
where we set 1 =[ 2;2] f 0g, . =f0g [ 3;i],suchthat = [ ,. We
rewrite ux, interms of the operators

Go:= S 'S= id; Gi= SS1 S S3+ Su);
Go:= S YS1+S; Sz Si);  Gsgi= SISt S+ S Su);
which gives, with z;(y) that are linear combinations of y1;:::;Va,
X X1 =
Uk, (¥) = zi(y)Gi S 'f:
=D =0

Introducing the orthogonal decomposition of V into ¥y := fv:vj ., vj , evem,
X := fvivj , odd,vj ,=0g, V5:= fv:vj , =0, vj , oddg, we obtain
G = G\ = GV = fOg  V ;
GoV;GiV V55 GaViiGi¥s Wrr Gap GV Vi
G2G3Va = GiVa; Gavo = Vo Vo 2 Vo, G3Gava = Giva; Gava = vz; vz 2 Vs
Combining these properties, we arrive at the following result.
Theorem 2. Let D be as in(4) with d=4. Then for eachk 2 N, and for n(k) :=

of total degreek, such that

XK KA 1f k
sup u(y) Yo, Voket
y2U =1 \Y

and consequentlyd, u(U) ,, Cexp( jInTejn).

This explains the numerical observation of exponential convergete in this case.
Numerical tests also reveal, however, that this e ect is strongly ied to the problem
geometry and is lost for less regular subdivisions of the unit square to quadri-
laterals, where one only observes subexponential decay of thewidths.

This research was supported by ERC AdG BREAD.
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Numerical approximation of total-variation regularized p roblems
Soren Bartels

The numerical treatment of minimization problems de ned on functions of
bounded variations leads to several diculties. First, solutions do not exhibit
higher regularity properties and typically jump across lower dimensimal subsets.
Second, the problems are non-linear and non-di erentiable, so thiathe practical
iterative solution has to be done appropriately. We discuss a priori ad a posteriori
error estimates and their practical performance in the context ¢ adaptive mesh
re nement. The iterative solution is done by a primal-dual method, for which
modi cations are addressed that allow for larger time steps under @propriate
conditions. Particular attention is paid to the the optimality of conve rgence rates
and restrictions on step sizes.

As a reference model, we consider the Osher{Rudin{Fatemi enesgfunctional,
see [7], de ned foru2 BV () \ L?() by

| (u) = jDuj()+ Sku gk{zy

Here,g 2 L! () is a given noisy image, and > 0 a suitably chosen parameter,
so that the minimizer u ser%es as a regularization ofy. By noting that
n 0
jDuj() = sup ( udivpdx:p2 Hn(div;) ;jpj 1

the minimization probéem can be written as a saddle point problem, i.e.,

infsup  ( u)divpdx+ —ku gki:y Ik, (P):
up 2
The indicator functional |, ) enforces the constraintjpj 1 on vector elds
p 2 Hy(div; ). Duality arguments allow us to exchange the order of the in  mum
and supremum without modifying the value of corresponding saddle pints. In
particular, we may then eliminate the variable u via the optimality relation div p =
(u g). This de nes the dual problem, that consists in maximizing the functional

1
D(p)= 5—kdivp+ gkiz) + Skokiz) Tk (P)

in the set of all p2 Hy(div; ). For admissible functions v and vector elds q we
have that | (v) D(q) and equality for the corresponding solutions.

Following [6, 2] the approximation error u up of a conforming numerical
method can be bounded via

Sku upkfz(y  I(un) 1(u) 1(un) D(0);

for an arbitrary vector eld g2 Hn(div; ). For practical error estimation and
mesh-re nement, a good choice of is obtained by an appropriate post-processing
of u, noting that formally we have p = r u=jr uj, or by a numerical solution of the
dual problem. An appropriate choice of a subspac€;, Hn(div; ) is needed to

e ciently solve the non-di erentiable dual problem.
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The iterative procedure to solve the primal problem follows [5, 1, 4], ad realizes
a primal-dual iteration via solving the equations
Bl = uf+ deuf;
(dtpﬁ+l +r BE+l ,qh pﬁ+l )a 0’

(dtuﬁ+1 ;Vh)b"‘(pﬁ+1 T Vh)Lz) = (U'ﬁﬂ 9;Vh)L2() ;
repeatedly until a stopping criterion is satis ed. Here, d;a“*! = (a1 ak)=
with a step-size > 0 is the backward di erence quotient. The choice of the scalar
products is crucial to obtain e cient iterations. If ( ; )a is a discrete version of

the L? inner product, then the equation for dtpﬁ+1 can be solved directly. The
choice of theL? inner product for the equation that de nes dtuﬁ+1 leads to the
step size condition ch. This can be improved to the condition ch'’? if a

discrete version of theH /2 norm is used. The choice is justi ed by the observation
that solutions belong to BV () \ L! () and hence algebraically to H/2(). For
details, see [3].
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Multilevel Preconditioning of Discontinuous-Galerkin Sp ectral
Element Methods

Kolja Brix
(joint work with Martin Campos Pinto, Claudio Canuto, and Wolfgang D ahmen)

We consider preconditioning techniques for Discontinuous Galerkin DG) dis-
cretizations of elliptic boundary value problems [1]. Since the importan e ects
already arise in a simple model problem, we focus on Poisson's equationWe
choose the symmetric interior penalty Galerkin method (SIPG), be@ause symme-
try is preserved in the discretization process and the method is duaconsistent.
While in previous studies preconditioners for low-order methods hag been ad-
dressed [2, 3], our goal is now to exploit the full discretization poweof DG methods
using locally re ned meshes and in particular varying polynomial degres. For pre-
conditioners currently available the condition number grows logarithmically with
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the polynomial degree as long as it is kept the same throughout the esh and
it grows quadratically for spatially varying polynomial degrees. Our am is to
construct a preconditioner, which under mild grading conditions on the distribu-
tion of the mesh sizes and of the polynomial degrees leads to unifotynbounded
condition numbers for arbitrarily large and spatially varying polynomial degrees.
Moreover, we require the complexity of each iteration to remain prgortional to
the number of degrees of freedom. In this presentation we focum the dependence
of the condition number on the polynomial degrees and only considethe case of
geometrically conforming meshes [5].

A key ingredient for preconditioning high-order methods is to use tke nodal
spectral element method on Legendre{Gauss{Lobatto (LGL) gids. The LGL grid
Gy [ 1,1] R of order N 2 N consists of the two boundary points 1 and
N 1 inner points, which are the zeros of the rst derivative of the Legendre
polynomial L. These grids do not only provide high-order quadrature rules at
low cost in combination with appropriate weights, but give also rise to important
norm equivalences, see e.g. [10, 7, 15]. In particular, for the LGL gt Gy of order
N for any polynomial p on [ 1;1] of degree at mostN and its piecewise a ne
interpolant |, p at the points of the LGL grid Gy, one has

Kpkpz¢ 1,1 [Klg, pKrz¢ 10y  and  jpjur¢ 1,1 CHE Pikz¢ 1,1);

where the constants are independent of the polynomial degreH .

Our main tool for the construction of preconditioners is the auxiliary space
method (ASM). Many researchers can claim credit for this technigwe, see e.g. [14,
16], and it can be seen as an application of Nepomnyaschikh's ctitiousspace
lemma [13]. In the framework of the ASM, we set up an auxiliary problemthat is
closely related to the original one, but easier to solve. The closens®f the original
and the auxiliary problem is expressed by the ASM-conditions [14, 5], Wich are
direct and inverse estimates that involve the bilinear forms arising in he weak
formulations of the original and the auxiliary problem, a smoothing operator,
and two linear transfer operators that couple the linear spaces uderlying both
problems. The central ASM result [14] then identi es a symmetric preconditioner
such that the spectral condition number of the resulting precondtioned system is
up to a constant bounded by the quotient of the largest and smalleseigenvalue of
the preconditioned auxiliary problem and the preconditioned smoothng operator.

We construct a multi-stage preconditioner [4, 5] by using three cosecutive
realizations of the ASM. Formally this concatenation of ASM precondtioners can
be interpreted as a single preconditioner with three smoothers. Wavould like to
emphasize that in particular the rst and the third application of the ASM are
also of interest as standalone components for new preconditiongrsee e.g. [8].

In a rst application of the ASM, the spectral DG method is preconditioned by
a spectral conforming Galerkin method on the same grid. The smodiing operator
is obtained from an inverse estimate and its matrix representation isdiagonal.

Since LGL grids for di erent degrees do not match at element interaices, one
cannot use direct low-order nite elements on LGL grids as confornmg auxiliary
spaces. Therefore, for the second application of the ASM the ptdem is transferred
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from a spectral conforming method to a problem on a space that in &h element
is given by a tensor product of piecewise linear nite elements on a dydic subgrid.
These dyadic grids, which mimic LGL grids, are constructed [6] suchltat they are
locally quasi-uniform, the grids are locally of a mesh size that is compable with
that of the corresponding LGL grid, and the family of grids is nestedat the same
time. Due to the anisotropy of the dyadic grids, in order to derive anappropriate
smoothing operator an inverse estimate can only be applied in seledeparts of
the domain. Nevertheless, the matrix representation of the smoihing operator
is very sparse and its inverse can be e ciently approximated using a gbstruc-
turing approach with patchwise block-elimination and nitely many Gau ss{Seidel
relaxations on the skeleton. Suitable coupling operators for the cse of varying
polynomial degrees can be obtained using element shape functionadpolynomial
and piecewise linear interpolation [4, 5].

The third application of the ASM exploits the hierarchical structure inherent to
dyadic grids in order to build a multilevel preconditioner based on a conposite mul-
tiwavelet approach. From [12] we know that in an anisotropic situation a H *-stable
splitting on a single element is obtained by tensorization, when orthognality of
di erence spaces is ensured. Therefore, we use piecewise lineathmgonal multi-
wavelets [11], which are constructed in such a way that the nite elenent space on
a dyadic grid can be embedded into a locally re ned wavelet space of coparable
dimension. Since the multiwavelets are prepared to be restricted tdhe interval
[0; 1], we obtain a Riesz basis for?([0; 1]%) and by scaling also for H 1([0; 1]9)
and H2([0; 1]%). Now our idea is to construct a global auxiliary multilevel space
with a H 1-stable multilevel decomposition [5]. Following [9], we continuously glue
anisotropic wavelet bases in 2D or 3D obtained by tensorization on ez element
into a global composite basis, such thatH !-stability is preserved. Then we can
apply a diagonal wavelet preconditioner and nested iteration techigues to ensure
an e cient solution of the auxiliary problem in linear complexity.

Various numerical experiments quantify the theoretical ndings [5].
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Regularity of Stochastic Partial Di erential Equations in Besov Spaces
Related to Adaptive Schemes

Petru A. Cioica

(joint work with S. Dahlke, K.-H. Kim, S. Kinzel, K. Lee, F. Lindner, T. Raasch,
K. Ritter, and R.L. Schilling)

We present a result concerning the regularity of the solution to seend order sto-
chastic partial di erential equations (SPDEs, for short) of the form

xa xoooxd
% du = aVuy, +f dt+ Kue + g dwi
: .
() on [0;T] O :
u=0 on 0;T] @D,
u@=u on O

* VW

whereO RYis an arbitrary bounded Lipschitz domain. The equations are driven
by a sequencef (W) 0.7] - K 2 Ng of real-valued standard Brownian motions
w.r.t. anormal ltration ( Ft)e20, 1) ON @ complete probability space ( ;F;P). We
use the special scales

1 1
(?) B{(0); == a+ B; > 0
of Besov spaces to measure the smoothness w.r.t. the space vadla(p 2 xed).
This analysis is motivated by some fundamental problems arising in thecontext
of the numerical treatment of Eq. ( ). By now, the numerical methods for SPDEs
discussed in the predominant part of the literature rely on uniform re nements
w.r.t. the space variablex 2 O. This seems to be suboptimal: It is well-understood
that, in general, the convergence rate of classical uniform methds depends on the
Sobolev regularity of the target function. Simultaneously, in comma settings,
the solution to Eqg. ( ) has only poor spatial Sobolev regularity, see, e.g., [6, 7].
Consequently, we cannot expect high convergence rates by reing uniformly in
space. Therefore, it would be tempting to useadaptive schemes in order to increase
e ciency. It is well-known that the approximation order that can be achieved by
adaptive and other non-linear approximation schemes depends in nmy cases on
the regularity of the target function in the scale (?), where p indicates the L ,-norm
in which the error is measured. In particular, this relationship holds for adaptive
schemes based on wavelets. Thus, in order to clarify whether spal adaptivity
really pays for SPDEs, rst of all, the regularity of the solution has t o be analysed,
using the scale @) to measure the smoothness w.r.t. the space variable. The scales
(?) are commonly known as ( ,-)adaptivity scales

Main Results. Our analysis is embedded into the framework of the analytic
approach to SPDEs initiated by N.V. Krylov. In particular, we borrow (and
extend) the L ,-theory developed in [5] for second order linear SPDEs on general
bounded Lipschitz domains. Therein, certain weighted Soblev spasaH gye(O) are
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used to measure the regularity of the equation w.r.t. the space vaable. For
integer 2 Ng and 2 R, they consist of all measurable functions having nite
norm |
X Z * 1/p
kukpi (o) = (x)9D%(x) * (x)® ddx  ;
| joj y ©
where (x) denotes the distance of a pointx to the boundary of the domain.
For fractional and negative smoothness parameters, they can be obtained by
complex interpolation and duality. In order to give a rigorous meaningto Eq. ( ),
one also needs analogous spacbl%,e(o; *,) for “,-valued functions; we refer, e.qg.,
to [5] for details. The main result of [5] applied to Eqg. ( ) in a simpli ed setting
reads as follows: Assume that the coe cientsa? and 'k are constant and ful Il
the stochastic parabolicity condition

xd 1

(P) of al th; Vig i Kjj% 2 RY;
ij=1

for some constants ;K 2 (0;1 ). Then,forp 2and 2R,if

D) f2Lp( [OTEHY.S, ,(0) and g2 Lp( [0 TEHY L) 2(0:2);

then Eq. ( ) with vanishing initial condition up 0 has a unique solution
u2Llp( [OTEHY, »(0):

From this result, we extract information about the spatial Besov regularity of
the solution in the adaptivity scale by proving the following central embedding.
It shows that|lup to a certain extent|the analysis of the Besov re gularity in
the adaptivity scale can be traced back to the analysis of the weiglgd Sobolev
regularity. It is worth mentioning that this embedding is not necessaily connected
to the SPDE setting. A proof can be found in [1, theorem 4.7] or altenatively in
[4, theorem 6.9].

Theorem 1.1. Let O RY be a bounded Lipschitz domain. Fop 2, ; > 0,

we have

n d (0}

—+ —; forall 0< < [ ;o o——

5 or a min 1
Using this embedding, we obtain our main result on the spatial Besovegularity

of SPDEs in the adaptivity scales (?). For Eq. ( ), it reads as follows. The result

in its full generality has been proven in [1, 2, 4].

HV E:

p.d Vp(o) ! BS,T(O);

Tl

Theorem 1.2. Letp 2and 2 R. Assume the simplied setting from above.
Then, if f andg=(g¥) fulll (1) andug O, the unique solutionu to ( ) ful lls:
u2 Ly( [0;T];BE_(0)); 1 —+ L forall 0< < minn ; ELO'
P ’ ’ T,T ’ d pl ’ pd 1 .
Let us illustrate the relevance of our result for the question whetler adaptivity
pays in the SPDE context, by considering a prime example.
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Example 1. Let O R? be a bounded two-dimensional polygonal domain. As-
sume that (@) = ( i;), where ( i) denotes the Kronecker delta, and '* 0,
i.e., consider the stochastic heat equation with additive noise. If and g ful Il (1)
with =2 and p = 2, then the unique solution u to Eq. ( ) with up 0 fullls

u2Ly(  [0TLEBE,(0); X

1
2+ > forall 0< < 2
Simultaneously, the analysis in [7] shows that, under similar assumptins, the
spatial Sobolev regularity of the solution to Eq. () is strictly less than 2, if the
underlying domain is non-convex. This is a clear theoretical justi cation for start-
ing to design spatially adaptive wavelet schemes for SPDES.

Note that, in contrast to the deterministic setting, when considering stochastic
PDEs we observe the paradigm that the Besov regularity in the scalg?) exceeds
the spatial Sobolev regularity of the solution also in the case of smdb domains,
see, e.g., [3, Example 5.2].

Further results obtained so far, in particular, concerning the Helder regularity
of the paths of the solution, considered as a stochastic processking values in
the Besov spaces from the adaptivity scales?), can be found in [1, 4]. Therein,
we also extend thel p-theory from [5] to an Lq(L p)-theory for the stochastic heat
equation, allowing the integrability parameters q and p w.r.t. the time and space
variable, respectively, to di er. This is done by a combination of techniques from
the analytic approach with results from the semigroup approach toSPDEs.
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Greedy approximation and radiative transfer
Wolfgang Dahmen
(joint work with Christian Plesken)

The numerical treatment of kinetic models such as radiative or neuton transfer
(see e.g. [7]) pose signi cant challenges because the underlying opéar equation
involves a global scattering term and the solution is a function of thevelocity or
angular variables, ranging (in the present context) over a compatset V, and the
spatial (and/or temporal) variables in a bounded domain D (as well as possibly
further parameters). Thus, one confronts the curse of dimensnality when em-
ploying standard discretizations such as nite di erences or nite elements. In
fact, for a total number of variables p, which even in the stationary case ofd = 3
spatial variables and two directional parameters amounts top = 5, the size of
such standard discretizations with meshsizéh would scale likeh P where, due to
the scattering term, the system matrices are fully populated. Nurerous strate-
gies have been developed to deal with these obstructions such alset method of
moments, employing spectral expansions in the angular variables,radhe discrete
ordinate method in combination with xed point iterations, see e.g. [6] and the
references cited there.

We now sketch a rather dierent strategy proposed in [4] and highlight the
principal underlying conceptual guidelines. It aims at approximating the solution
in terms of possibly short sums of products of functions of the spi@al variable x
and the velocity variable v, respectively. Rather than choosing a xed expansion
system beforehand, the factors in such low-rank tensor appramations have to be
determined in the course of the solution process so as to generapmssibly few
terms needed to realize a given accuracy tolerance. Starting froma large xed
background discretization of the problem, aside from its prohibitive size, would
be a delicate matter because of the nature of the PDE, so that themeaning of
an accurate solution of the discrete problem is not clear. The constiction works
therefore from coarse to ne improving on the accuracy of the curent iterate in
an outer xed point iteration tracking the solution as a function in Lx(D V).
Each iteration step is realized approximately within a tolerance",, depending on
the current xed-point iteration accuracy level. Rather than view ing an iterate
u™?! as a function in Lo(D V ) though, a key idea is to interpret the set of
states u™! (;v) 2 Lo(D) for eachv 2 V as an element of thesolution mani-
fold M ns1 = fu™i(;v) : v 2 Vg for a parameter dependent familyof transport
equations. The solution manifoldsM ,, are approximated by snapshotsu"( ;v;j),
vi 2 V, for judiciously chosen parametersy;. In this sense the method shares some
common features with the discrete ordinate method. The essentladi erence lies
in the fact that the expansion systems are not xed beforehand lit determined
adaptively in the course of the outer xed-point iteration. Here are a few com-
ments on the actual realization of this process. When approximatig M .1, the
right hand sides in the corresponding transport problems involve tle application
of the scattering operator with input from the preceding approximation to M .
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A Hilbert-Schmidt expansion of the kernel facilitates on the one ham the appli-
cation of the scattering operator and also yields a favorable form bthe parameter
dependence for the main ingredient of the scheme, namelyr@duced basis approx-
imation to the evolving solution manifolds M ,. Here we make essential use of the
results from [5] onrate-optimal reduced basis method$or a wide class of parameter
dependents PDEs. This class includes singular perturbed and inde ite problems,
in particular, convection dominated convection-di usion problems as well as pure
transport problems needed in the present context. Rate-optiméty means that
the distances of the solution manifold from the reduced spaces tehto zero at the
same rate as the respective Kolmogorowm-widths, see [5, 1]. For judiciously chosen
tolerances",, n 2 N, the xed-point step at stage n boils then down to extending
the reduced basid jg}\':”l constructed for M ,, to a basisf jg}\'z”fl for M +1 SO as
to meet an accuracy level" , for a suitable 2 (0; 1) (see above for the role of ).
This makes also use of a robustness result in [1] combined with the ceergence
of the xed-point iteration to ensure rate-optimality of the succe ssively generated
basis. At stagen this gives rise to approximations of the form

R
(1) Cnj (V) (%)

j=1
that approximate u"(;v), v 2 V, in L,(D) even uniformly in V. In principle,
the coe cients cn j(Vv) are then not yet given explicitly but can be computed by
solving a stable Petrov-Galerkin problem in the reduced space. Thearrespond-
ing (near-optimal) test spaces are generated through armnterior greedy loop that
can be shown to guarantee an inf-sup constant that stays unifanly away from
zero. This in turn, gives rise to an e cient surrogate that can be used to steer
the outer greedy search for the next basis function, [5]. This buildsn an essential
way on the general strategies for contrivingwell-conditioned variational formu-
lations from [2, 3]. In particular, the equivalent formulation of Petrov-Gale rkin
schemes in terms okaddle pointproblems plays a crucial role in avoiding the com-
putation of explicit near-best test function systems that necesarily depend on
the parameters. We also discuss ways of deriving from (1¢xplicit representations
for the coe cients cn j(v) yielding approximations of the exact solution u(x;v)
in Lo(D V ). On the one hand, this can be done by (quasi-)interpolation over
V. An alternative is to use Petrov-Galerkin projections this time in Lo(D V)
from suitable low-dimensional pairs of trial and test spaces which a& derived from
the pairs in L,(D) constructed by the greedy procedure. We brie y discuss some
relevant norm equivalences between several graph norms that arneeded for the
stability of these Petrov-Galerkin projections. We conclude with sane remarks on
the complexity of such a strategy. The only problems to be solved in au ciently
large truth spaceare the transport problems inL,(D) needed to determine the re-
duced basis functions. For a given target accuracy, their numberoughly scales like
the dimension of a \Kolmogorov-best" linear space that approximates the solution
manifold corresponding tou( ;Vv);v 2 V, which is the exact solutionu 2 L,(D V ),
within that target accuracy. When these n-widths decay with some algebraic rate,
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one expects a nite number of new basis functions in each xed-poihiteration so

that the overall number of truth-solves grows logarithmically in the target accu-
racy. These transport solves employ also stable variational formiations and give
rise to rigorous a posteriori bounds, [3]. All other Petrov-Galerkin solves as well
as the inner stabilizing greedy loops for nding near-optimal test functions take
place in the \small" reduced spaces requiring a computational e ort that scales
(low-order) polynomially in the reduced dimensions. Finally, the well-canditioned

stable formulations used on each level of the scheme provide rigase a posteriori
error bounds that allow one to verify the set target accuracy, se [2, 3, 5].
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Randomized sampling of matrices: three recent results
Laurent Demanet

We brie y review three matrix factorization methods based on randomized sam-
pling: the randomized SVD; the randomized skeleton or CUR factoriation; and
matrix probing. This note is an aide-memoire for a presentation givenat Ober-
wolfach in January 2015. The author is grateful to the organizersfor their work
on a very successful event.

1. The randomized SVD

The question is to nd the SVD of A 2 R" ", where A has rank close tok, from
Y = AX whereX 2 R" (&*P) js a gaussian random matrix with iid entries.

Once Y is computed, it can be orthogonalized into a matrix Q. We obtain
a low-rank approximation of A from QQ A. The following result indicates how
accurately the column space information is captured by this randomsampling
method, as a function ofp. In this note, k k is the spectral norm.

Theorem. (Halko, Martinsson, Tropp, 2009 [7])
p__
kA~ QQ Ak (1+11 (k+ p)n) ke1;
where  are the singular values ofA, and with probability 1  6p P.
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In practice, a slight oversampling ofp=5or 10 suces. The SVD A= 0 VT
can then be obtained as follows:
FactorizeQ A= U VT,
FormQ(U VT)=(QU) VT =0 VT,
This randomized construction of the SVD is potentially useful in any gpplication
where the SVD needs to be sped up.

2. The randomized skeleton or CUR factorization

The question is to factorize A in skeleton form asA ' Ac ZAR, whereC and R
indicate restriction to subsets of columns and rows, respectively.

The middle matrix can either be formed asZqp,: = AZAAL (optimal in the Frobe-
nius norm), or Zpgor = AER, where the pseudo-inverse is adequately regularized.
A rst result concern the existence of subsetsC and R yielding a good skeleton
approximation, though it does not detail a practical algorithm for computing C
and R.

Theorem. (Goreinov, Tyrtyshnikov, Zamarshkin, 1997 [5]) There exist C, R,
such that

p
KA AcZopt ARk (1 1+Kk(n K)) ke
A second result nds C and R constructively via a rank-revealing QR decom-
position, at the expense of a slightly worse constant in the error ésnate.

Theorem. (Gu, Eisenstat, 1996 [6]) There existC, R, and Z obtained from a
rank-revealing QR algorithm, such that

p
KA AcZArk ( 1+4k(n K)) ket

A third result is concerned with the case whenC and R are chosen uniformly
at random, which allows to lower the complexity of computing the factors below
O(n?) (by not having to even sample every entry of the matrix A). For uniform
sampling to be successful, we need to assume the existence of atdazation
A = U VT with max; jfj Uijj;jVijjg p“—ﬁ where 1 is small. HereU and V
need not contain the singular vectors, but they are assumed to bé&sometries.

Theorem. (Chiu, Demanet, 2011 [3]) Sample' =10 k logn columns and rows
uniformly at random to get C and R. Then

n

with probability 1 4kn 2.

The complexity of forming the middle factor Z,oor is O(k3), up to log fac-
tors. Applications of the randomized skeleton factorization includethe numerical
analysis of operators, and possibly uncertainty quanti cation.
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3. Matrix probing

The question is to recover a matrix A 2 R™ " from the knowledge ofyx = Axy,

where x1;:::;Xq  N(O;14). Assume that A belongs to a knownp-dimensional
linear subspace, i.e., there exisBq;:::;Bp (Xed, given) such that
xXP
A= CiBi:

i=1

This assumption on A is very di erent from the rank- k assumption that underlies
the randomized SVD. The vectorc can be solved for from the simple least-squares
formulation 0 1 0 1 0 1

Y1 X1 0 Bx1

%;R:A%;E: GO ; K= c

Yq X = BXq

The matrix « is of sizenq p. For this matrix to be left-invertible, is is necessary
that it is tall and thin, i.e., nq p. Probing will be successful if x is furthermore
well-conditioned. This will happen if the B are properly chosen, and ifp is small
enough, as we now detail.

The two important properties of the B; are the \weak condition numbers"
and , de ned as follows.

De nition.
o KBk i
a i kBikF

De nition.
= cond(N); Nij = Tr( B Bj):
A small amount to a high rank condition, while a small amounts to a Riesz
basis condition. The recovery result for the vector c is as follows.
Theorem. (Chiu, Demanet, 2011 [2]) For su ciently large C, if
ng Cp( logp)%

then
cond( x) 2 +1;

with probability 1 O pn! €/¢° .

Matrix probing is useful for preconditioning large, structured systems of equa-
tions [4], and for representing singular and oscillatory kernels in numecal analysis

[1].
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Instance optimality of the maximum strategy
Lars Diening
(joint work with Christian Kreuzer)

For more than forty years adaptive nite element methods (AFEM's) have been a
standard tool of engineering and scienti c computing for solving PDEs. In contrast
to uniform re nements adaptive mesh re nements allow to minimize the required
degrees of freedom needed to obtain a given accuracy. Althouglery successful in
the convergence analysis is rather recent.

The basic idea is that based on the discrete solution on some coarseesh local
(per element or edge) a posteriori error indicators are computedA ner mesh is
then constructed by local re nements in areas with large indicators. This process
is iterated until the a prescribed error tolerance is met. Up to now there are
basically two marking strategies for which optimal convergence haveen studied.

(a) Der er marking (bulk chasing): The smallest set of elements is marked
for re nement such that the indicators on the marked elements ae a xed
bulk of the total error estimator.

(b) Maximum strategy: The elements with error indicator comparable to the
maximal indicator are marked for re nement.

In the meantime convergence and optimality of the Der er marking strategy is
well understood. In [4] Der er (and later re ned in [5]) showed linear convergence
of the adaptive nite element method (AFEM):

SOLVE !' ESTIMATE !' MARK !' REFINE

In [2], Binev, Dahmen and DeVore proved optimal convergence rate of Der er
marking introducing an additional coarsening step. This arti cial re quirement was
removed in [7]. Numerous article have appeared since then, extendinthe results
to, various types of error estimators, general elliptic problems ad di erent type
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of nite element methods. In summary the development for the theory of Der er
marking has been very successful in the last years.

For the maximum strategy not much has been known until recently. Under very
restrictive assumptions Babuska and Vogelius studied a simple one diemsional
problem in [1]. However, in the much more involved multidimensional casdhere
was even no convergence theory until Morin, Sieber and Veeser alved in [6] basic
convergence. Very recently Diening, Kreuzer and Stevenson [3]rpved instance
optimality of an AFEM with (modi ed) maximum strategy for the Dirichlet model
problem

with f 2 L2().

Theorem. In each iteration an AFEM with (modi ed) maximum strategy pr oduces
a quasi optimal total error with respect to the degrees of femlom (DOFs) up to a
constant.

This result has been obtained in [3] for piecewise linear ansatz functies in
two dimensions. The purpose of this talk was to present this result ad further
generalisations to higher order elements.

In order to explain the main ideas we need to introduce some notation We
denote by T, a conforming initial triangulation of a polygonal, planar domain .
Based on the newest vertex bisection we consider conforming reements of T ,
which have a partial order in the sense thatT T if T is a renement of T.
For a xed k 2 N, let V(T) denote the subspace owol’z(T) of functions, which
are piece wise polynomials of degree at mod#t on every element ofT. For each
admissible triangulation T we denote byuy 2 V(T ) the Galerkin approximation
of the Poisson problem.

Since the estimator is equivalent to the error only up to some additiveso called
data oscillation term called it is reasonable that optimal convergenceof an AFEM
can only obtained with respect to the total error

kr ur r uk3+ oscz (T):

The oscillation somehow quanti es the resolution of the dataf on the current
triangulation T. In particular, we set

X

0sc3(T) = h2 jf Tof 2 dx:

Tor T
Here T« isthe locall?-projection to the space of polynomials of degree at most
and T, 1f 0.

It is well known that the Galerkin approximation ur can be equivalently char-

acterised as the minimiser of th% energy functioznal

J(v) = %jr vj? dx vf dx:
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Therefore, dening J (T) := J (ur) allows us to reinterpret the AFEM as an
energy minimisation process with respect to a sequence of nestedraissible re-
nements.
We use the standard residuum based error estimator organised bgdgesS of
the triangulation, i.e.
X Z
E2(T:S):= hs |j[r ur]sj®ds+ h2j ~u+ fj2dx
S Sissideof T T
where hs and ht are the local mesh sizes of the edg® and the triangle T re-
spectively and denotes the local Laplacian, which is a piece wise polynomial of
degree at mostk 2.
We de ne a modi ed energy by

G(T):= J(T)+ osci ,(T):

Note that we have osck 2 here instead ofoscyk 1 dierent from the de nition of
the total error. The modi ed energy satis es the following crucial properties:

(a) Gis decreasing with respect to re nement.
(b) For T T we have

X
G(T) G (T) E*(T;S);
S re ned
i.e., the energy di erence is equivalent to the error estimators of tke re ned
edges up to xed constants.

joint re nement T_ and joint coarseningT" such that the areas of re ne-
ment from T; to T_ are disjoint, then the energy di erences approximately
sum up, i.e.
. xn
G(T) G(T) G(T) G (T):

i=1
(d) We have that
G(T) J (u) kr ur r uki+ osci ((T):

In other words, up to xed constants, the di erence between the modi ed
energy and the energy of the continuous solution is equivalent to th total
error.
These are the main ingredients of the proof of instance optimality in [3, where
the casek = 1 has been studied. We show that all of these estimates are valid in
the casek 1, which implies the desired instance optimality result of an higher
order AFEM with modi ed maximum marking strategy.
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Anisotropic mesh adaptation for crack detection in brittle materials
Massimo Fornasier
(joint work with Marco Artina, Stefano Micheletti, and Simona Perot to)

A brittle material, subjected to an external force, rst deforms itself elastically,
then it breaks without any intermediate phase. A mathematical model of brittle

fractures without prescribed path has been proposed by Frandirt and Marigo in

[6]. The quasi-static evolution of the fracture is based on the sucasive minimiza-
tion of an energy designed according to the Grith's principle of energy balance
between elastic energy and a ctitiouszcrack energy:

a(t) 2 arg min jir uj?dx+ HN 1(Sy);
u 2 SBV() , nSu
u 5, =9 ,
where p is the domain of the force g, the elasticity constant, and S,

is the jump set of the function u in the special bounded variation function space
SBV (). This approach has the advantage that the functional settin g in SBV
does not require a pre-de ned crack path, but has the drawback that it evolves
through the minimization of a nonconvex and nonsmooth functional involving
unknown functions and sets and any discretization is a bias towardsa proper
fracture propagation. Bourdin, Francfort, and Marigo [4] used dther very ne
grids , with consequent very large computational times, or design rashes according
to the expected crack evolution, in order to have reliable simulations

el aa Vo2 e V‘

3 2 4 0

Typical mesh from the experiments of Bourdin, Francfort, an d Marigo .
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Burke, Ortner, and Suli [5] proposed a fully adaptive scheme basg on isotropic

mesh re nements, leading though to the generation of extremely ne adapted
meshes.

Respectively 300658 and 429116 elements.

In our talk we presented the results included in the papers [1, 2, 3]the numerical

simulation of brittle fractures, building upon the work [5], but using ad aptive
anisotropic remeshing.

Signi cantly reduced number of elements (15987) in our simu lations.
Relevant features of our adaptive anisotropic remeshing method ra:

1. The number of degrees of freedom and the computational timeare dra-
matically reduced, despite the remeshing;

2. The remeshing does not alter the energy pro le evolution;

3. On the crack tip the automatically generated mesh is nearly isotrpic and
does not constitute an arti cial bias for the crack evolution.

As a consequence of 2. and 3. we obtain always physically acceptabteack
evolutions beyond state of the art simulations. It remains still opento provide
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rigorous proofs for the improved complexity 1. as well as for the mee fundamental
properties 2. and 3.
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Reduced Basis Approximation of Noncoercive Variational In equalities
Silke Glas
(joint work with Karsten Urban)

Parabolic variational inequalities often occur in industrial or nancia | problems,

e.g. as time dependent obstacle problems or as pricing of swing optisron the
stock market. Swing options are widely used in electricity markets fo the volume

and price exibility reasons they provide. Due to their multiple exercise property,

the pricing of swing options requires sophisticated numerical methds. The ob-
jective is to price swing options for many di erent parameters, e.g. calibration

of volatility, interest rate or strike price. Using the setting of [12], swing options,

which are modeled by a series of parabolic variational inequalities, cabe rewrit-

ten as a cascade of European and American options. Thereforene needs to
e ciently solve parametrized parabolic equations for European options as well as
parametrized parabolic variational inequalities for American options

Fine discretizations, that are needed for these problems, resolve@ large scale
problems and thus in long computational times. To reduce the size othese prob-
lems, we use the Reduced Basis Method (RBM)[9]. The ambition of the BM is to
e ciently reduce discretized parametrized partial di erential equ ations. Problems
are considered, where not only a single solution is needed, but solutis are wanted
for a whole range of di erent parameter con gurations. For the European options,
we can apply standard RBMs for parabolic equations, e.g. [5, 11], wheas for the
American options, we need new methods to treat the reduction of he parabolic
variational inequalities.

In the context of variational inequalities, RBM have initially been applied to
the elliptic setting [6]. Based on this, [7] applies RBM to parabolic variational
inequalities for American options, but does not provide error estimaors. Recently,
we have been aware of [1], which presents a time stepping error estator.
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Indeed, improved error estimators for parabolic equations could b achieved by
linking the RBM with the space-time formulation [11]. Using space-time formula-
tions [10], we do not have a time stepping scheme anymore, but takéne time as an
additional variable in the variational formulation of the problem. Com bining the
RBM with the space-time formulation, we derive a noncoercive Petre{Galerkin
variational inequality problem [3]. For this case, the standard theoly for the well-
posedness does not hold. We derive the necessary conditions foellposedness
and therefore extend the results from [8]. Using this framework, a error estima-
tor based on the residuum. We present numerical results for a pametrized heat
inequality model [4], particularly, we perform experiments focusing @ rigor and
e ciency of the error estimator depending on the shape of the obgacle.

Further research will be devoted to the search for suitable stableeduced test
spaces using the double greedy approach [2].

Acknowledgements.This research was supported by the Deutsche Forschungs-
gemeinschaft (DFG) under SPP1324. The research of Karsten Uan was also
supported by the DFG under GrK 1100.
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Ridgelet Discretization of Linear Transport Equations
Philipp Grohs
(joint work with Axel Obermeier)

We presented a novel method for the numerical solution of linear tansport equa-
tions of the form

(1) s ru(x)+ (xu(x) = f(x);

where
s2S% % and RY:

and subject to appropriate boundary conditions.

Our motivation comes from the desire to e ciently solve kinetic trans port equa-
tions (arising for instance in radiative transport or statistical mechanics e.g. the
Boltzmann equation) which are in general of the form

(2) s ru(x;s)+ (x;s)u(x;s) = f(x;s)+ Q(u)(x;s)

where Q is a scattering or collision operator.

The numerical discretization of such equations is challenging, mainly de to
the fact that the above equation is not elliptic (making it di cult to pre condition
the arising linear system of equations) and singularities can be transorted along
rays which may result in solutions u which are discontinuous across the transport
direction s.

The purpose of this talk was to present a novel, ridgelet-based disetization of
(1) and use this discretization for the numerical solution of the full kinetic transport
equation (2) either using a (sparse) collocation approach in the diretion s or a
tensor product construction [1].

Due to the fact that ridgelet systems are well adapted to the struwcture of lin-
ear transport operators, it can be shown that our scheme opetas in optimal
complexity, even if line singularities are present in the solution [2].

Many questions remain for future work, in particular the problem of good
ridgelet constructions for nite domains .
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Hybrid numerical-asymptotic boundary element methods for high
frequency wave scattering

David P. Hewett

(joint work with Simon Chandler-Wilde, Stephen Langdon, Ashley Twigger,
Samuel Groth, Markus Melenk)

There has been considerable interest in recent years in the develo@nt of numeri-
cal methods for time-harmonic acoustic and electromagnetic wavecattering prob-
lems that can e ciently resolve the scattered eld at high frequencies. Standard
nite or boundary element methods (FEMs and BEMSs), with piecewise polynomial
approximation spaces, su er from the restriction that a xed num ber of degrees of
freedom is required per wavelength in order to represent the osciltary solution,
leading to excessive computational cost when the scatterer is laggcompared to
the wavelength.

The hybrid numerical-asymptotic (HNA) approach aims to reduce the number
of degrees of freedom required, by enriching the numerical appramation space
with oscillatory functions, chosen using partial knowledge of the hidp frequency
(short wavelength) asymptotic behaviour of the solution. The BEM setting is
particularly attractive for such an approach, since knowledge of he high frequency
asymptotics is required only on the boundary of the scatterer; fo a recent review
of the HNA methodology in the BEM context see [3]. In this setting onetakes the
relevant boundary value problem, which in the acoustic case involvethe Helmholtz
equation

(1) (+ K)u=0;

where the wavenumberk is proportional to the frequency of the incident wave, and
reformulates it as a boundary integral equation on the boundary of the scat-
terer, with frequency dependent solutionV. Then, informed by a high frequency
asymptotic theory such as the Geometrical Theory of Di raction (GTD) (see e.g.
[11, 2]), one seeks to approximatd/ using an HNA ansatz of the form

M
2) V(x k) Vo(xk)+ Vim(X;K) exp(ik m(x)); x2 ;

m=1
where \y is a known oscillatory function (e.g., the leading order term in GTD
approximation), the phases , are chosena-priori (e.g., from partial knowledge

of the higher order GTD components) and the amplitudesV,,, m=1;:::;M, are
approximated numerically. The key idea is that if Vo and , m=1;:::;M, in
(2) are chosen wisely, thenVy,,, m = 1;:::; M, will be much less oscillatory than

V and so can be better approximated by piecewise polynomials thav itself.
The nature and complexity of the HNA ansatz (2) is inherently problem-depen-
dent, being governed by the underlying high frequency asymptotis of the solution,
which themselves depend strongly on the geometry of the scatter and the form
of the incident wave. As a result, the HNA approach has been appliedso far
mainly to problems for which these asymptotics are relatively simple (nostly 2D
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problems, with the exception of [6] and [3,x7.6], and mostly convex scatterers,
with the exception of [4]). But for many such problems (e.g., scatteing by sound-
soft smooth convex obstacles in 2D [5, 1], convex [10] and nonconv@] polygons
and 2D planar screens [9] - see [3] for further examples) the HNA gpoach has
proved to be very e ective, providing a dramatic reduction in the number of de-
grees of freedom at high frequencies, and in some cases even fiecy-independent
computational cost (when the numerical integration required for practical imple-

mentation is carried out using appropriate oscillatory quadrature routines), see,
e.g., [9].

In my talk | will outline the basic HNA methodology in the BEM context,
and will highlight some of the interesting analytical and numerical chdlenges it
presents. One such challenge is that to design HNA approximation sges opti-
mally, and to prove their e ectiveness by rigorous numerical analyss, one needs

explicit in their wavenumber dependence. This requires rigorous higHrequency
asymptotics of a type not typically available in the asymptotics literat ure. For
instance, the HNA BEMs presented in [10, 4, 8] for scattering of agustic plane
waves by sound-soft polygons adopt armp approximation strategy for the ampli-
tudes Vim, m = 1;:::; M, with mesh re nement towards corner singularities (and
towards geometrical shadow boundaries in the case of [8]). In ordéo apply stan-
dard hp techniques to obtain best approximation error estimates, one rg has to
derive non- standard wavenumber-explicit bounds on the analytic ontinuation of

| will also give an overview of current research into the developmenand anal-
ysis of HNA methods for more general scattering problems involvinghonconvex
scatterers [4, 8], 3D scatterers, and transmission problems [7], veine complicated
multiple scattering and shadowing e ects present interesting challeges.
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Sparse BEM for the heat equation
Helmut Harbrecht
(joint work with Christoph Schwab and Johannes Tausch)

1. Introduction
This talk is concerned with the numerical solution of the heat equatian
@u u=0 in I
u=f on I
u=0 on f Og

via boundary integral equations, where R® is a domain with Lipschitz bound-

ary = @and | = (0;T) is a time interval. To this end, we introduce the
thermal single layer operator
zZ.Z
Vg(x;t) = G(kx ykit )g(y; )d yd

0
wherex 2 and G(; ) is the heat kernel, given by
1 r2
@)z oP g
Thus, the potential ansatz

G(r;t) = ;t 0 and G(r;t)=0;t< O

u(x;t) = G(kx yk;t )g(y; )d yd
0

leads to the boundary integral equation
(2) Vg=f on I:

2. Galerkin scheme

The thermal single layer operator is a symmetric, elliptic and continuaus operator
with respect to the its energy space (see [1] for the details). Hers we may apply
a Galerkin discretization without further restriction.

Consider two sequences of nested ansatz spaces

Vo V; v, L2() ;

(VARRAVA A L2(1)
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wlowow)owdw)

Figure 1. Visualization of the sparse tensor product space.

such that
j ji=dimy; 4 j jj=dimy' 2

Instead of using the full tensor product spaceU; .= V VjI for the Galerkin

discretization of (1), we shall consider the related sparse tensoproduct space.
The starting point are the multilevel decompositions

<
I

Wy W, W; ;
Vi'=w;  w w;':

Then, the sparse tensor product space is given by

M M MO M
b, '= W Wh= W, Wh= Vi o Wh
0] j 030 [=D [°30

as illustrated in Figure 1. Notice that only a wavelet basis in time is necesary to
obtain a basis in the sparse tensor product space.

The sparse tensor product space contains much less unknownsropared to the
full tensor product space: dimll_ilj I 4 instead of dimy; I 8l. This means
that the time discretization is for free. Nevertheless, the approxmation property
in the sparse tensor product space is essentially the same as in thallf tensor
product space, provided that we spent some extra smoothness iterms of the
mixed Sobolev spaces. Notice that the construction of the sparstensor product
space can be much improved by using generalized sparse grids andsate functions
with di erent polynomial orders in space and in time, see [2].
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3. Fast matrix-vector multiplication

For the matrix-vector multiplication, we need to be able to apply the matrix blocks

of the form
V"‘O = hV( 0] Igj), ) :jLZ( 1)

wherek ki:k'%; j. We aim at approximating such blocks by a low-rank ap-
proximation

) L i
) V- o A%[g] Bg@

i=1
where M is at most a power ofj. Then, as proposed in [4], the matrix-vector
multiplication can be performed in essentially linear complexity provided that
A%@] and B%[gj can be computed in essentially linear complexity. In particular,
by use of prolongations and restriction, it suces to make available quadratic
matricesA%[g]and B%@Jwith 1= %and ', ="9.

A semi-discretization of the heat kernel in time leads to anH-matrix, cf. [3].
Exploiting that this H-matrix is a Toeplitz matrix, we arrive at a low-rank ap-
proximation of the form (2). In space, we apply the multipole method as proposed
in [5]. Putting these ingredients together, we obtain an algorithm whic solves the
boundary integral equation (1) in the sparse tensor product spae in essentially
linear complexity.
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hp {\Version Discontinuous Galerkin Methods on Polygonal and
Polyhedral Meshes

Paul Houston

(joint work with Paola Antonietti, Andrea Cangiani, Emmanuil Georgo ulis, and
Stefano Giani)

The numerical approximation of partial di erential equations (PDE s) posed on
complicated domains which contain "'small' geometrical features, orascalled micro-
structures, is of vital importance in engineering applications. In sich situations, an
extremely large number of elements may be required for a given mesienerator to
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produce even a coarse' mesh which adequately describes the unglieng geometry.
With this in mind, the solution of the resulting system of equations emanating, for
example, from a nite element discretization of the underlying PDE of engineering
interest on the resulting "coarse' mesh, may be impractical due totlte large number
of degrees of freedom involved. Moreover, since this initial ‘coarsmesh already
contains such a large number of elements, the use of e cient multi-leel solvers,
such as multigrid, or domain decomposition, using, for example, Scharz-type
preconditioners, may be di cult, as an adequate sequence of “coaer' grids which
represent the geometry are unavailable.

In recent years, a new class of nite elements, referred to as Coposite Fi-
nite Elements (CFEs), have been developed for the numerical solwn of partial
di erential equations, which are particularly suited to problems characterized by
small details in the computational domain or micro-structures; see for example,
[5, 4], for details. This class of methods are closely related to the Shibey-Weller
discretizations developed in the context of nite di erence approximations, cf. [6].
The key idea of CFEs is to exploit general shaped element domains upowhich
elemental basis functions may only be locally piecewise smooth. In pacular, an
element domain within a CFE may consist of a collection of neighbouring Eements
present within a standard nite element method, with the basis function of the
CFE being constructed as a linear combination of those de ned on tle standard
nite element subdomains. In this way, CFEs o er an ideal mathematical and
practical framework within which nite element solutions on (coarse) aggregated
meshes may be de ned.

In this talk, we consider the generalisation of CFE schemes to the e whenhp{
version discontinuous Galerkin composite nite element methods (DGCFEMS) are
employed, cf. [1]. In particular, we propose a new interior penalty skeme char-
acterized by a careful choice of the discontinuity-penalization paameter, which
permits the use of polygonal/polyhedral elements such that

mesh element faces may have arbitrarily small measure in two dimensis;
both mesh element faces and edges may have arbitrarily small measuin
three dimensions.

The approach is based on exploiting a new inverse inequality relevanta elements
with elemental interfaces whose measure is potentially much smallethtan the mea-
sure of the corresponding element, cf. [3]. On the basis of this invee inequality,
together with appropriate approximation results on general polygns/polyhedra,
we derivea priori error bounds for the proposed IP DGCFEM. Furthermore, the
application of this class of methods within Schwarz-type domain decmposition
preconditioners will be considered, cf. [2].
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On low-rank approximability of solutions to operator equat ions and
eigenvalue problems

Daniel Kressner
(joint work with Luka Grubst, Ande Uschmajew)

We consider the approximate solution of tensor equations and eigemalue problems
of the form

(1) A(X)=B; A(X)= X;

whereB; X 2 R" N are tensors of ordedand A 2 R" nrR" Nisalin-
ear operator. Such problems arise in a variety of applications, inclushg the struc-
tured discretization of PDE boundary and eigenvalue problems on a-dimensional
hypercube; we refer to the survey [GraKT13] for a more compreénsive overview.

As dincreases, the solution of (1) by standard linear algebra techniguebecomes
quickly infeasible, due to the exponential growth of the degrees ofreedom. Low-
rank matrix and tensor approximation techniques have been remakably successful
at obtaining highly accurate solutions to various instances of (1). © understand
the success of these techniques and to decide a priori whetherdi can be applied
to a given problem, it appears to be important to study under which conditions
on the given data A; B one can expect good low-rank approximability ofX. In
the following, we summarize some new contributions in this direction.

The cased = 2 has been studied intensively in the literature, in particular for
the special case of a Lyapunov matrix equation:

AX + XAT= bb: A2R" " b2R™

The situation is particularly clear when A is a symmetric negative de nite matrix,
in which case it can be shown that the singular values oX satisfy the following
bound [Sab06, GruK14]:

8 r 2
— _ex — KbKZ
J max (A)] P

(2) r+l (X ) Iog(8 (A))
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where (A) = kAkxkA 1k, and max(A) denote the condition number and the
largest eigenvalue ofA, respectively. The situation is less clear case for nonsym-
metric A, in particular when A is highly non-normal; see [BakES14] for a recent
discussion.

The exponential decay rate in (2) depends rather mildly on the cond@ion num-
ber of A. Nevertheless, the bound deteriorates as(A) ' 1  and therefore does
not admit an extension to Lyapunov operator equations with unbounded coe -
cients. This question has been addressed in [GruK14], where it is showthat the
rth (generalized) singular value of X decays exponentially in" r, provided that
the involved operator A generates an exponentially stable analytic semigroup, and
A is either self-adjoint or diagonalizable with its eigenvalues contained ira strip
around the real axis. Numerical experiments with discretizations & 1D and 2D
PDE control problems con rm this decay.

It turns out to be dicult to derive decay bounds of the form (2) fo r more
general linear matrix equations, such as

AX + XAT+NXN T = bb:

which play a role in bilinear and stochastic systems, see, e.g., [BenB1BenD11].
The bound (2) relies on the diagonalization ofA and therefore can only be extended
if A and N can be diagonalized simultaneously, that is, if they commute with each
other. As this condition is usually not satis ed in applications, one neals to resort
to completely di erent techniques.

In [KreU14], a general framework for obtaining low-rank approximability of
solutions to matrix and tensor equations has been developed. Fod = 2, one
considers a xed-point iteration

Xnt1 = ( Xn); Xn?2 HS(Hl;HZ)

for Hilbert spaces H;;H, and an appropriately chosen energy functionalF
HS(H1;H,) ! R* for measuring convergence to the xed pointX . The following
assumptions are imposed:

(A1) Contraction in energy: There exists 0< q < 1 such that
F(Xne)  o°F (Xn):
(A2) Finite rank growth: There exists R > 1 s.t.
rank(Xn+1) R rank(Xp):
(A3) Stability with respectto k kps: There exists > 0 such that
kX Xnk&s F(Xn):

Under these assumptions, it is shown that the singular values x of X satisfy

In q

q r_l 1 In R
o

3) 2+ 2+

r+1 r+2

where 1 is the smallest value ofF that can be attained on a certain subset of
nonzero rank-1 matrices. This tail bound can be turned into (algelaic) decay
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bounds for the singular values, using standard techniques. To agp them to (1)
for d = 2, standard stationary iterations, like the gradient method, for solving
linear systems and eigenvalue problems can be plugged into ; see [Kk#l4] for
more details.

The extension of the above result to the casal > 2 is fairly straightforward
provided that an SVD-based format like the tensor train decompogion [Osell]
or the hierarchical Tucker decomposition [HacK09] is used for the lv-rank ap-
proximation of the involved tensors. Instead of (A2), one then neds to assume
that the application of the xed point map results in a constant grow th of the
corresponding tensor ranks (e.g., TT ranks or hierarchical Tucke ranks). Again,
we refer to [KreU14] for more details.

It should be noted that (3) results in algebraic decay bounds that ae sub-
stantially weaker than what is typically observed in applications. Future work
will therefore aim at exploiting additional structure of A for particular classes of
applications.
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Adaptive Approximations of Parametric PDE-Constrained Co ntrol
Problems
Angela Kunoth
(joint work with Christoph Schwab)

Optimization problems constrained by linear PDEs (partial di erentia | equations)
are challenging from a computational point of view: one needs to sob/asystem of
PDEs coupled globally in space, and, in addition,globallyin time if the underlying

PDE is time-dependent. This global coupling is an unavoidable featureof such
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control problems where typically an adjoint PDE comes into place as pecied
next.

PDE-constrained control problems. Let Y; U be Hilbert spaces oveR which
shall host the statey of a system and acontrol by which the state can be in uenced.
LetJ:Y U! R be atwice dierentiable functional, and K : Y U! Y®bea
(in y; u Fechet-) di erentiable function where Y °denotes the topological dual of
Y. Consider the constrained minimization problem

(1) (y,u;rz‘fv y J(y;u) subjectto K(y;u)=0:

For the constraints K (y; u) = 0 (which will be the PDE later), we assume that
there exists a unique solutiony 2 Y for the case thatu 2 U is given. A typical
way to solve (1) is to compute the zeroes of the rst order Fechet derivatives of
the corresponding Lagrangian functional, de ned by introducing anew variable p,
the costate or adjoint state in terms of which the constraints are appended to the
functional, i.e., L(y;u;p) := J(y;u)+ KK (y;u);piyo v with L:Y U Y! R.
Denoting by Lo(y;u;p) := ZL(y;u;p) and Loz(y;u;p) == Z-L(y;u;p) the rst
and second variation, of L with respect to z = y;u;p, and assuming thatJ is
guadratic in both y;u and K linear in y; u, the necessary conditions for optimality
yield the linear system of equations

10 1
Lyy Lyu Ky y RN
A B ‘U
(2) @Luy L uu KUA@UAZQO : B 0 (yp) =g0 :Gg=g
Ky Ky 0 p

with some right hand sideg and C denoting the dual of C. The Hessian ofL or
the Karush-Kuhn-Tucker (KKT) operator G has for suchlinear-quadratic problems
constant entries, and the necessary conditions are also su cient Moreover, if J or
K do not contain products yu, one hasLy, = Lyy = 0 so that A is a block diagonal
operator. Typically, the quadratic functional (1) contains inner p roducts so that
the resulting Riesz operatorsLyy, Ly, are symmetric which implies that A and,
thus, G is symmetric. Moreover, in all the cases we considerA : V!V ;B:V !
QP for some Hilbert spacesV, Q are continuous, ImB = Q%and A is invertible on
Ker B so that the saddle point problem (2) has forg 2 V° Q 9a unique solution
g2V Q by the Brezzi-Fortin theory. Thus, we can consider constrained lirear-
guadratic minimization problems as symmetric saddle point problems(2) with a
boundedly invertible linear mapping G:V Q!V Q °whereV:=Y U and
V := Q. Let me present some standard examples from [6] to which this scanio
applies and specify the corresponding system (2).

Dirichlet problem with distributed control. Consider the standard weak
formulation of a second order elliptic PDE with homogeneous bounday conditions.
ChoosingY = H}() and U := Y% we consider for givenf 2 YP° the linear
operator equation

(3) K(y;uy:=Ay f u=0
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and quadratic objective functional
1 !
(4) Jy;u):= Sky y kg + Ekukéo

for a given target statey 2 Y and any xed weight parameter ! > 0. We assume
that A : Y ! YOis alinear (not necessarily symmetric) boundedly invertible oper-
ator. The norms in (4) can be norms on Hilbert spaces as long as theoastrained
optimization system (1) is well-posed.

Denote by R : Y ! YO%the Riesz operator de ned by the inner product (; )y
inducing k ky, hv;Rwiy vyo:=(Vv;w)y;Vv;w2 Y. Since (; )y is symmetric, R is
also. The Lagrangian is now of the form

1 _ ! . .
B) Loysup)= shy y iRy y)iv vot iR iy vo+bhAy f ujpiye v

Thus, the system (2) becomes
0 101 O R 1

R 0 A y y
(6) @ IR ! |A@QUA=@0A;
A | 0 p f

i.e., A =diag(R;!R 1) and B =(A; I). The system matrix G de ned in (6) is
symmetric sinceR is. Moreover, A is positive de nite and B has full rank since,
by assumption, the PDE constraints have a unique solution for giveru. Thus, the
resulting saddle point operator G is symmetric and boundedly invertible.

Parabolic PDE with distributed control. The constraint K (y;u) = 0 in
(1) is here a linear parabolic evolution PDE in full space-time weak fornulation
from [9] (in a variation). The parabolic operator equation is formulated such
that the resulting operator B is boundedly invertible from X := L?(1) Y to
YO:=((L2(1) Y)\ (Hi(1) Y9)°whereH1(l) is the closure of the functions in
H (1) which vanish at end time T and | := (0; T) denotes the time interval. The
constraints are of the form (3) with the parabolic evolution operator B = @+ A in
full weak space-time form in place ofA, see [5] for details. Choosing the objective
function then as in (4) with the obvious changes for the norms, i.e., ging the
norms for X, Y, we arrive at a system very similar to (6) with symmetric A =
diag(R1;!R 2) with the respectively de ned Riesz operators. The correspondig
operator G is here a boundedly invertible mapping fromz := X Y 9 X onto
Zo

Adaptive wavelet methods for the parabolic pde-control pro blem. In

view of the fully in spaceand time coupled system (2), conventional time-stepping
methods require an enormous storage. In contrast, adaptive mbkods in both

space and time which aim at distributing the available degrees of freeaim in an a-
posteriori-fashion to capture singularities are most promising. Emoying wavelet
schemes for full weak space-time formulations of the parabolic PD& we can prove
convergence and optimal complexity for control problems constained by a linear
parabolic PDE [5], generalizing the ideas from [3] for control problemgonstrained
by an elliptic PDEs.
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Parametric control problems. Yet another level of challenge are control prob-
lems constrained by evolution PDEs involving stochastic or countablymany in -
nite parametric coe cients: for each instance of the parameters this requires the
solution of the complete control problem (2).

Our method of attack is based on the following new theoretical pardigm devel-
oped for elliptic PDEs in [1, 2]. Itis rst shown for control problems constrained
by evolution PDEs, formulated in full weak space-time form as in [9], that state,
costate and control areanalytic as functions depending on these parameters. We
establish that these functions allow expansions in terms of sparseshsorized gen-
eralized polynomial chaos (gpc) bases. Their sparsity is quanti ed interms of
p-summability of the coe cient sequences for some < p 1. Resulting a-priori
estimates establish the existence of an index set fa@imultaneousapproximations
of state, co-state and control for which the gpc approximationsattain rates of best
N -term approximation. This entails corresponding sparse realizationsin terms of
deterministic adaptive Galerkin approximations of state, co-stateand control on
the entire, possibly in nite-dimensional parameter space, see [6]. W specify in
[7] how to realize these Galerkin approximations by the techniques in [Band the
realizations in [4] for a single PDE.
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Recent results on greedy algorithms and the reduced basis me thod for
high-dimensional partial di erential equations

Tony Lelievre

Approximating high-dimensional functions which are de ned as soluions to par-
tial di erential equations (PDES) is a problem which appears in many contexts
(kinetic models, quantum mechanics, nance, uncertainty quanti cation, optimiza-
tion problems, etc...). Many techniques have been proposed in the litature to
deal with such problems and we focus here on Proper Generalized Beamposition
(greedy algorithms) and reduced basis techniques.

The principle of the Proper Generalized Decomposition (PGD) introduced by
A. Nouy and F. Chinesta in di erent contexts is to approximate the solution to a
PDE as a sum of tensor products:

xXo
u(Xa;:::;Xq) " ri(x1):::rd(xq)
k=1
where the successive terms in the sum are computed in a greedy wayne after the
other. As an example, one could think of a Poisson problem in high dimesion,
which can be written in a variational form as: 7 7
1

ir vj?

ay = fv:
92 0 [0,1]¢

Find u 2 Hg([0; 1]%); u 2 argminy, p o 1

R
Let us denote E(v) = % 0.1]° ir vj? 0.1]° fv the functional involved in the

variational formulation. Then, the greedy algorithm (PGD) writes:
8n 0;compute (rL;:::;rd) 2 H([0; 1])? such that
|
X 1 '
(Fh;iiiTR) 2 argming:  qoyo ytqo.apd E Fe(X1) i iire(xa) + sH(xa) :::s%(Xq)
k=1
At each iteration, one thus has to compute d functions of a one-dimensional
variable (instead of a function of ad-dimensional variable for the original problem):
this is why the algorithm can be used even in high dimension (sayl of the order
of 10). The question then is of course whether one can prove that

X0
Un=  rE(x1):::rd(xq)
k=1
converges tou.

In [1], we prove that under suitable assumptions, the algorithm indeé converge
in the sense thatup strongly converges tou in the norm of the Hilbert space on
which the functional E is de ned (namely H43([0; 1]%) for the example above). This
requires in particular some convexity assumption ork. The proof is based on ideas
developed in the eld of nonlinear approximation theory by V. Temlyakov, R. De
Vore and co-workers.

mated by considering the associated Euler equations. In the casd the Poisson
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equation presented above, these Euler equations are a systemabne-dimensional
Poisson problems, coupled through non-linear terms. Starting frm a linear prob-

lem, we thus end up with, at each iteration, a non-linear problem to besolved. This
is the price to pay in order to reduce the complexity of the problem asa function

of the dimensiond. This is very much reminiscent to what happens in electronic
structure computations, when the Schmdinger equation (high dmensional linear
eigenvalue problem) is approximated using a variational principle resticted to

Slater determinants, which leads to a low dimensional nonlinear eigeralue prob-
lem.

Among the current open questions on this type of algorithm, let us nention
the extension to parameterized eigenvalue problems, or the treatent of non-
symmetric problems (which are not naturally associated with a minimizé&ion prob-
lem as above). From a numerical analysis point of view, it would be inteesting
to show that if the solution to the PDE admits a rapidly converging separated
representation, then the greedy algorithm does indeed also conkge very quickly.

The reduced basis technique (proposed and developed by Y. Maday. Pa-
tera and co-workers) is another technique which is restricted to he setting of
parametrized PDEs. To make it concrete, let us consider as an exapte the pa-
rameterized Poisson problem:

Find u 2 L2([0; 1% Hg([0; 1P)); divx(a( ;x )r xu) = f (x)

where 2 [0;1]Y is the parameter andx 2 [0;1F is the space variable. Here,
and contrary to the previous setting, the di erential operators only act on a low-

dimensional variables (namelyx 2 [0; 1]?) and the high-dimensionality of the prob-

lem comes from the parameter 2 [0;1]%. The problem is thus to approximate

the solution u( ;x ) to this problem.

The reduced basis technique consists in: (i) building in an o ine stage are-
duced basis, namely accurate solutionsi( j;Xx) for some well chosen values ; of
the parameters (where 1 i N with N' small compared to the total number
of degrees of freedom used to approximate the functions( i; )) and then (i)
approximating in the online stage the solution to the original problem using a

choice of the parametersf ;;1 i Ngis based on a greedy procedure, using
some a posteriori estimator which gives a reliable estimate of the eor introduced
by approximating the solution by a Galerkin procedure on the reducel basis.
While trying to apply this technique to an industrial problem (aeroacoustic
problems around an airplane, solved by a coupled boundary element ethod -
nite element method, in collaboration with Airbus), two problems wer e identi ed:
(i) the a posteriori estimator which is usually used is very sensitive toround-o
errors and (ii) the implementation of the method is very intrusive: it r equires to
enter deeply into the industrial codes in order to retrieve the matrices which are
built to construct the linear problem to be solved. Using techniques lased on
the empirical interpolation method introduced by M. Barrault, Y. Ma day, Nguyen
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and A. Patera in 2004, we were able to propose solutions to the two rpblems
mentioned above, see [2, 3].

Let us nish this short review by an original and hopefully illuminating pr e-
sentation of the empirical interpolation method (EIM) (see also the recent work
by M. Bebendorf, Y. Maday and B. Stamm for similar ideas). The aim of EIM
is to build a seperated representation of a functionf : X Y ! R using two
ingredients. The rst one is the following result: For given interpolation points

vertible, then there exists an interpolating function 14(f) : X Y ! R which
writes: X
la(f)(xy) = Diif (Xi;Vf (Xy))
1ij d
such that,

Indeed, it is easy to check that these properties are satis ed by lzoosingD =
F T. The second ingredient is a procedure to choose the interpolation gints

(f (Xi;¥j)1 ij « is invertible. Let us denote I«(f) the associated interpolated
function. Then, tge next points (Xk+1 ; Yk+1 ) are de ned by:

< Xk+1 =argmax kf (x; ) 1Tk(f)(x; )ky
X2X

(1)

Yk+1 = arg T%Xjf (Xk+13Y)  Te(f)(Xke1 5 Y)j:

The greedy procedure stops iff (Xk+1 ;Yk+1)  Tk(f)(Xk+1 ;Yk+1)] = 0.
It can be checked that if the matrix (f (Xi;yj))1 ij « is invertible and if

T (X3 Yo ) Tk ) (X 5 Yie1 )] 6 0

then the matrix (f (Xi;yj))1 ij k+1 IS also invertible. In addition, if (Xk+1 ;Yk+1)
satis es (1), then jf (Xi+1 ;Yk+1)  Tk(f)(Xk+1 ;Yk+1 )] = O implies that f (x;y) =
I(f)(x;y) forall (x;y)2X Y .

These results imply that either the greedy procedure stops aftema nite num-
ber k of iterations, which means thatf (x;y) = I(f )(X;y), or the greedy procedure
can be pursued, and one can de ne recursively a sequence of inpalating func-
tions (I1k(f))k 1 such that the interpolation error is non increasing.
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Adaptive Wavelet Schwarz Methods for Nonlinear PDEs
Dominik Lellek
(joint work with Stephan Dahlke, Shaun Lui, Rob Stevenson)

In this talk, we present adaptive wavelet domain decomposition metlods for the
numerical solution of nonlinear partial di erential equations. In th e rst part, we
will be concerned with semilinear elliptic equations of the form

Au+ G(u) = f;

where A 2 L(H{() ;H *()) is a linear elliptic operator, G: H{§() ! H ()
is a nonlinear mapping given by a Nemitsky operator andf 2 H (). A typical
example is the disturbed Poisson equation u+ u3 = f. With the help of a
wavelet Riesz basis = f ga2 for H{(), this equation can be rewritten in the
sequence spacex() as
Au + G(u) = f;

with A;G : "5() ! "2()and f 2 (). Using this discretized version, adap-
tive wavelet methods based on a Richardson iteration or Newton's m#od were
developed in [1]. It can be shown that, under reasonable assumptienthese meth-
ods are convergent and asymptotically optimal. The latter means that if the best
N -term tree approximation to the solution converges with a given rake s > 0, i.e.,

S

inffku  vkgy) ;#suppv  N;v tree-structuredg. N ~;

then the method reproduces this convergence ratePThe aboveate s can be de-
scribed in terms of the regularity of the solutionu = ,, ux » in a Besov scale,
the restriction to tree-structured index set only has a very little e ect on this. In
many cases, the rate exceeds the convergence rate of standarniform methods
and therefore justi es the use of adaptive methods.

A di culty in the application of these methods, however, lies in the con struction
of suitable wavelet bases. If the domain is not smooth and has reetrant corners
such as in the standard example of the L-shaped domain

=( L1’n[0;1)%
common wavelet constructions are often very technical and may &ave large con-
dition numbers. An idea from [7] to circumvent this problem is to deconpose the

domain into overlapping subdomains that are di eomorphic to the unit cube. In
the case of the L-shaped domain, such a decomposition is given by

o:=(C L0) ( L1); 1:=( L1) ( 10

On the subdomains, we can now make use of known wavelet constrigns, for
which the problems occurring on the L-shaped domain can be avoidedUnder
weak conditions on the decomposition, the union of the Riesz basesidhe subdo-
mains gives a stable, but overcomplete generating system fdd §(), a so-called
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wavelet frame. Moreover, the use of such an overlapping domain demposition
corresponds naturally to Schwarz domain decomposition methodsThe basic idea
of these methods is to reduce the problem on the domain to a serieof sub-
problems on the subdomains ;. We consider two types of such methods, the
multiplicative and the additive Schwarz method. The rst algorithm re quires a
sequential solution of the subproblems, whereas they are indepdeant in the latter
type of methods. For linear problems, adaptive wavelet methods aplying such
techniques have been developed and analyzed in [9]. Besides from lgeiconver-
gent and asymptotically optimal, their numerical performance has eécouraged us
to generalize such methods to a range of nonlinear problems. In [4],exdevelop an
adaptive additive wavelet Schwarz method for a range of nonlinear pblems. For
the construction of the algorithm, we adapt ideas and strategiesrom [3, 5]. We
show that the method is convergent and asymptotically optimal. The expected
convergence rates can also practically be observed in numerical gariments at re-
alistic scales. Ongoing research is concerned with the generalizatido a broader
range of nonlinearities and to the multiplicative Schwarz method.

Furthermore, in the second part of the talk, we outline how the principles of
the additive Schwarz method carry over to the stationary Navier-Stokes equation,

1
= + — u+f ; divu=0 ;
(urju=r p Re u on vu on

at least for small Reynolds numbers Re and with Dirichlet boundary canditions.
In [2] we sketch the construction of an additive wavelet Schwarz miaod for the
above equation, using the divergence-free wavelets from [8] andlapting strategies
from [6]. For this method as well, we can show convergence and optirfity with
respect to the degrees of freedom.

Finally, we explain how the adaptive wavelet Schwarz methods can beambined
with Newton's method, possibly opening the prospect to cover a brader range of
nonlinear problems.
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A global view on adaptivity and sparsity in PDE discretizati on
Volker Mehrmann

(joint work with C. Carstensen, J. Gedicke, A. Miedlar, S. Quaraishi, C.
Schreder)

In the numerical solution of partial di erential equations (PDEs) m odeling the
behavior of real world problems, sparsity is of major importance. Mijor questions
are: What is a good space of ansatz functions so that that the solion can be
sparsely represented/approximated in this space, what is a gooddsis/frame in
this space, or what is needed so that the nite dimensional version hs a sparse
operator or a sparse inverse and leads to a fast method? Typicalpproaches use
local basis functions in the nite element method or, if something more about
the physics is known, the nite element space is enriched as in the erinded nite
element method. One can also use wavelets, shearlets, Fourier, gpectral function
methods to sparsely represent the solution.

These questions are discussed in the context of modeling and simulah of
brake squeal in disc brakes. Break squeal is usually due to self-ated vibration
caused by a utter-type instability originating from friction forces at the pad-rotor
interface [1]. The analysis is based on idealized minimal models, real egpments,
and numerical simulations on uniform meshes via the nite element moels, see
e.g., [6, 11]. But, despite extensive research, fully satisfactory reedies have not
been found.

The macroscopic model equations are usually considered in the form

M()u+D( )u+ K()u=f

where M;D;K 2 R™" are mass, damping and stiness matrices respectively,
depending on a set of parameters , and f is an external force. The function
u:R! R" contains the position variables associated with the degrees of free
dom, arising from the FE modeling. In rotating machinery, the matricesD and
K are typically non-symmetric. The non-symmetry arises by incorpoating phe-
nomenological models of the gyroscopic and circulatory forces anthe parameters
typically include operating conditions (temperature, pad pressure etc) and mate-
rial conditions (friction coe cient, brake geometry and mass distr ibution, e ects
of wear and damping etc), as well as the rotational speed of the disbrake disc.
For self-excited vibrations it is also customary to include the excitaion force in
the form of a nonsymmetric matrix which is added to the sti ness matrix.

The vibrational modes (as functions of the parameters) are detanined by sam-

half plane eigenvalues and associated eigenvectors of the quadiagigenvalue prob-
lems
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Collecting all these eigenvectors in a matrix and using a partial singula value
decomposition, one obtains a matrixU consisting of the singular vectors associ-
ated with the large singular values above a certain threshold value. Tere exist
a multitude of numerical methods for the numerical solution of quadatic eigen-
values problems, see e.g. [9], however, this problem is still a major cquatational
challenge, when the parameter vectomp varies in a large range.

Projecting the full problem by a congruence with the matrix U, the reduced
model with coe cients

U™ ( )U;UTD( U+ UTK( ))U;

can then be used for optimizing the system with respect to paramedr variations.
The newly developed method improves current approaches but is iavery e cient,
because it is based on a ne uniform mesh and a large number of eigeaiue
problems have to be solved. Furthermore, although the method wiks well in
practice, the convergence and error analysis is rather di cult.

To obtain better performance and error estimates, we also discis adaptive
nite element methods. We derive error estimates and adaptive renement tech-
niques for the self-adjoint subproblem and incorporate the nonsgmmetry via a
homotopy. The errors in the adaptation and in the homotopy are bdanced to get
error estimates.

Recently the discussed work has been complemented with a backwarerror
analysis for the in nite dimensional case [10], a posteriori error esmates for the
hp- nite element methods in the non-selfadjoint case [5], as well thereatment of
multiple real eigenvalues in the self-adjoint case [4]. However, therare no results
for multiple complex eigenvalues or Jordan blocks.
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A Dimensional Reduction Approach Based on the Application o f
Reduced Basis Methods in the Framework of Hierarchical Mode I
Reduction

Mario Ohlberger
(joint work with Kathrin Smetana)

Many phenomena in nature have dominant spatial directions along wicth the es-
sential dynamics occur. Examples are blood ow problems, uid dynanics in pipes
or river beds, and subsurface ow. Motivated by a project on adative hydrologi-

cal modelling of coupled hydrological processes [2] we started to iegtigate a new
dimensional reduction approach [5, 7] for problems with dominant diection which

is based on the application of reduced basis (RB) techniques in the hiarchical

model reduction (HMR) framework (cf. [8] and the references tlerein). In detail

let R? be a computational domain. We de ne the solution spaceV such that

Hg() V  H() and consider the following general elliptic problem:

Find p2V: a(p;v)=f(v) 8v2V;

wherea( ; ) is a coercive and continuous bilinear form andf a linear form.
The idea of HMR, which goes back to the work of Vogelius and Babusk#10],
is to perform a Galerkin projection onto a reduced space of rankn, i.e.

xn
Vim= Vm(Xy)=  Vk(X) k(Y); Vk(X)2X;
k=1
which combines the full solution spaceX in the dominant direction with a reduc-
tion spaceY :=span( 1;::; m) inthe transverse direction. The latter is spanned

by modal orthonormal basis functions. While so far the basis fundbns in the
HMR approach have been chosen a priori, for instance, as Legerglor trigono-
metric polynomials, in this work a highly nonlinear approximation is employed for
the construction of the reduction space. To this end we rst derive a lower di-
mensional parametrized problem in the transverse direction from he full problem
where the parameters re ect the in uence from the unknown soluion in the dom-
inant direction. For the derivation of a suitable 1D PDE in transverse direction,
we rst make the following tensor product ansatz

p(x;y)  UXx) P(y):

Here, U(X) represents the behavior of the full solution in the dominant direction,
which is unknown at this stage. By choosing the test functions asv(x;y) =
U(x) (y)forany 2 Y we obtain a parameterized reduced problem: Given any
U2X, nd P2Y such that

a(UP;U )=f(U )8 2Y:
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Exploiting the good approximation properties of RB methods, we then con-
struct a reduction space by applying a proper orthogonal decompsition to a set
of snapshots of the parametrized partial di erential equation. For an e cient con-
struction of the snapshot set we apply adaptive re nement in paraneter space
(cf. [4]) based on an a posteriori error estimate that is also derivedn this article.
We introduce our method for general elliptic problems such as advemn-di usion
equations in two space dimensions. Numerical experiments demonste a fast con-
vergence of the proposed dimensionally reduced approximation tohe solution of
the full dimensional problem and the computational e ciency of our new adaptive
approach.

In a next step, we extend the reduced basis-hierarchical modekduction frame-
work for the application to nonlinear partial di erential equations [9 ]. The major
new ingredient to accomplish this goal is the introduction of an adaptve Empirical
Projection Method, which is an adaptive integration algorithm based on empirical
interpolation [1, 3]. In detail, let u(; ) 2 L?(!) be given, e.g. as the image of
a nonlinear operator A, i.e. u(; )= A(v(; ). By M = fu(; ); 2 gwe
denote a snapshot set, where D is a training set of sizej j = n. The collateral
spaceWy = spanf 1;::; kg with ( i; j)i2w) = ij Is then de ned through a
POD of the snapshot set. By projection ofu into Wy, we obtain

K Z
Pelul(;y ) = u(;z) 1(z2)dz (y)
=1 @
For the usage of such a projection in our dimension reduction apprach we need
a separation of variables inu( ;z ) in order to be able to precompute the integral

on! independent of . To achieve this goal, the adaptive EPM subdivides! into
subintervals and applies locally a generalized empirical interpolation (&IM), i.e.

)4‘2

PL[ul(;y) = L [ul(;z) 1(2)dz (y)
=1 @
X X
with 1 ul(;z) = b [ul(;z)= TG N#(@):
121 121 j=1

Here (#]); is a basis of the localized space#/,, and ( j); a corresponding nodal
basis of the dual space, generated by the GEIM (cf. [1, 3]). Usinghe adaptive
EPM, we project both the variational formulation and the range of the nonlin-
ear operator onto reduced spaces. Those combine the full dimeiesal space in
an identi ed dominant spatial direction and a reduction space or collateral basis
space spanned by modal orthonormal basis functions in the trangrse direction.
Both the reduction and the collateral basis space are constructin a highly non-
linear fashion by introducing a parametrized problem in the transverse direction
and associated parametrized operator evaluations, and by applym reduced ba-
sis methods to select the bases from the corresponding snapskais in the linear
case. Rigorous a priori and a posteriori error estimators which donot require
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additional regularity of the nonlinear operator are proven for the Empirical Pro-
jection Method and then used to derive a rigorous a posteriori eror estimator for
the resulting hierarchical model reduction approach. Numerical gperiments for
an elliptic nonlinear di usion equation demonstrate a fast convergerce of the pro-
posed dimensionally reduced approximation to the solution of the fulldimensional
problem. Run-time experiments verify a linear scaling of the reductim method
in the number of degrees of freedom used for the computations inhe dominant
direction.

Finally, we also investigate the application of our HMR-RB approach in the
presence of interfaces or strong gradients in the solution which & skewed with
respect to the coordinate axes [6]. Usually, tensor-based modeéduction proce-
dures show bad convergence rates for such situations. The keyads to recover the
good approximation properties are the detection of the interfaceand a subsequent
removal of the interface from the solution by choosing the deterrmed interface as
the lifting function of the Dirichlet boundary conditions. For prescr ibed interfaces
we demonstrate in numerical experiments that the proposed proedure yields a sig-

ni cantly improved convergence behavior even in the case when werty consider
an approximation of the interface.
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Solution of high-dimensional partial di erential equatio ns using tensor
decompositions

Ivan Oseledets

High-dimensional partial di erential equations appear in many applications: elec-
tronic structure calculations, nancial modelling, stochastic partial di erential
equations, chemical master equations and many others. The mainrpblem with
the solution of such equation is that it is not possible to represent tle solution
directly in the tensor-product basis due to the underlying exponetial complex-
ity. Dierent strategies can be used, which can be summarized in thee di erent
approaches:

(Sparsity) We nd a basis set ' 1;::: such that the solution can be well
approximated by a sparse linear combination of such functions.

(Low rank) The main approximation anzatz in this strategy is the ap-
proximation of the solution in the sum-of-products (separable, caonical)

format

X\

f(X1;:::5%q) fs(Xs; )

k=1 s=1
(Composition) This idea is not yet fully understood, but is used implicitly
in many cases and may be traced back to Kolmogorov: the function isep-
resented as a superposition of several simpler functions of feweariables.
For example, the active subspacespproach has the form

f(x) = g(Wx);

wherex 2 R9 and W is ak d matrix, and function g depends onk
variables.

In this talk we focused on the ideas of low-rank approximation, whichin two
dimension reduces to the Hilbert-Schmidt decomposition and in the disrete case
- to low-rank approximation of matrices, which can be computed usimg singular
value decomposition (SVD).

It is now well understood, that for d > 3 the separated representation may not
be the optimal choice due to several reasons. The computation dhe minimal
number of summands () is an NP-complete problem, and the best approximation
with xed rank may not exist. A powerful alternative to the canonic al representa-
tion are the novel tensor formats, namely Hierarchical Tucker (HTucker) [3] and
Tensor Train (TT) formats [2]. The TT-format has a very simple stru cture (it
was known for many years in physics under the namenatrix product states). Sup-
pose we have chosen some discretization in each of the variabbeg and obtained
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where G (ik) is a matrix of sizerx 1 rg foreach xed ix andrg=rq=1. This
representation inherits many of the properties of the SVD, wheras in the worst
case the number of parameters with respect to the canonical fonat is O(dnr?),
wherer is the canonical rank (however, the canonical representation aabe di cult
to compute). So if we have an apriori knowledge that the tensor ca be represented
in the TT-format (or approximated well in this format) it is possible in t he robust
way to compute the approximation (for example, if we have accessatthe individual
elements of the tensor)

In the PDE setting the function is given explicitly as a solution of a certain
equation,

A(f)=o9;

where A(f ) is some operator. We require that this equation can be reformulatd
as a minimization of a certain functional

F(f)=min;

and de ne the solution as a minimizer of F over the set of all tensor of bounded
ranks. This setM , forms an embedded manifold in the space of all tensors, and we
have a non-quadratic and non-convex optimization problem (even ifthe original
functional was quadratic, as in the case of a linear operatoA).

There are several technique for the minimization of functionals ove low-rank
tensor manifolds (and new ones are now in active development). Theost straight-
forward way is the idea of alternating least squares The low-rank structure is
polylinear, so if we x all cores except one, it gives a quadratic minimizaion prob-
lem which can be e ciently solved. This is a block Gauss-Seidel method.ALS
has well-known problems: it is not adaptive in the sense that the rank should be
chosen in advance, and it may su er from a bad convergence. A mer sophisti-
cated approaches directly use the "train" structure of the format by merging two
adjacent cores into one:

W (ik;ike1) = Gr(ik)Grr1 (ik+1);

optimizing over it and splitting the indices again via the SVD; this is the core of
the density matrix renormalization group (DMRG) approach [5]. The problem is
that we have to work with squared mode sizes and it may not be the cse. Another
approaches have been proposed as well.

A dierent idea is to use the geometry of the manifold and to optimize in the
tangent space to the manifold; this requires a special machinery, it may lead to
the quite e cient methods. The "best" method is yet to be found.

If the solution can be well-approximated in the TT-format, then the re are sev-
eral approaches how to nd it e ciently. The main problem now lies in th e selec-
tion of the parametrization in such a way that the solution can be repgesented as
a low-rank tensor, which is not always the case: consider a two-dinmsional front
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going along the diagonalx = y. By making a variable change,z= x y;,w= x+y

we arrive at a low-rank function. The idea of active subspaces [4](lin& transfor-

mation of coordinates) may be very useful in this case, but it is a spa&al case of a
more general anzatz of composition of simpler mappings); so, theugstion is, can
we provide e cient numerical tools for nding such compositions?
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Schwarz Iterative Methods: New Developments
Peter Oswald
(joint work with Michael Griebel, Weiqi Zhou)

The name Schwarz iterative methods has been coined in the late 1983 as a theo-
retical framework for investigating domain decomposition and multilevel methods
for PDEs. They are based on the notion of stable space splittings ofite- and
in nite-dimensional Hilbert spaces, and in essence represent a merconstructive
version of the method of alternating projections, see [2] for detidgs and historical
remarks. In a nutshell, a stable space splitting of a Hilbert spaced equipped with
a coercive Hermitean forma( ; ) is given by a nite or countably in nite family
of Hilbert spacesH; (each equipped with its own coercive Hermitean forma;( ; ))
and a family of bounded linear operatorsR; : H;j ! H such that the energy norm

kukZ = a(u;u) and the splitting-related norm «
kjukj? = infp ai(uj; uj)
u2Hi:u= Ry .
are equivalent onH . In mum and supremum of the quotient a(u; u)=kjukj? over H
are denoted by min and nax, respectively, and their quotient = pmax= min IS
called condition number of the splitting. These constants govern tle convergence

theory of iterative solvers for elliptic variational problems,

(1) nd u2 H suchthat a(u;v)=(f;v)ny 8v2H;
based on the splitting. We consider only the multiplicative Schwarz iteration
2) W = ol + 1 RwW

where nding the update direction w{ 2 H; involves solving thei-th subproblem
@) aw:vi)=alu u;Rvi)=(f;Rivi)n a(u;Rivi)  8vi 2 Hi:
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Which i = ij is chosen for the update matters, until recently only deterministic
orderings have been considered. More recently, greedy and raach orderings (and
their combinations) received much attention, both due to the simpliaty of their
error analysis and their sometimes much better performance.

Here is a short account of our recent contributions to the convegence analysis
of multiplicative Schwarz methods (references to the history of tle subject and
related (earlier and parallel) work by other authors, especially in opimization
literature, can be found in the papers cited below). To correctly sate them, we
assume uniform boundedness of the operatorR; with respect to the involved
energy norms: Let < 1 foralli, where

kRiuika ikVikai 8Vi 2 Hi:

The early results [1, 2, 3] concern nite splittings with J subproblems
(i12f1;2;:::;J0) and cyclic orderingsij = j (mod J) + 1. For properly

chosen, xed!; = ! 2 (0;2=), the convergence rate per cycle of (2) is
upper-bounded by
(4) ku u“kZ (1 1=(log,(4J) )™Ku u°k3; L

The logarithmic dependence onJ cannot be removed [1] in general. In
the special case of the Kaczmarz method for solving the least-sques
problem for linear systemsAx = b with generalm n matrix A, where
the associated subspace splitting involvesn one-dimensionalH;, W. Zhou
recently improved this bound by replacing the logarithmic dependene on
J = m by a logarithmic dependence on the rankr  min(m; n) of A, see
[5, Theorem 4].

Greedy orderings, wheré = i; is chosen depending on the current residual,
e.g., such that

i kwd K, sUp | Lo kg,
for some 0< 1, have been treated in [4] for nite splittings. The
error reduction per single step in (2) with! j = 1= 4, ! 2 (0;2), is upper-

bounded by
G) ku WK @ @ 1) mn=( 1+ og)ku WKE O

A rough comparison with (4) indicates the superiority of this bound (e.g.,
there is no dependence o).

The recent interest in investigating random orderings was triggere by a
2009 paper by Strohmer and Vershynin on the convergence of a mdom-
ized Kaczmarz method. In [4], the exact counterpart of (5) (with =1)
was established for the expected square energy norm error of amdomized
iteration (2), where in the j-th step i = i; was chosen randomly and inde-
pendently with probability = i=( 1+ ::: 3). Even though the a priori
bounds for greedy and random orderings are identical, the numeral tests
reported in [4] show that the greedy version leads to faster convgence in
practice, and that combinations of randomization and greedy appoaches
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(6)

can remedy slow convergence of the cheaper randomized (2). Arople-
mentary estimate was proved in [5, Theorem 3] for a block version of2)
with random orderings.
Finally, (2) can be executed also for in nite space splittings, where it
turns from an iterative solver into an approximation algorithm for th e
solution u of (1) by nite linear combinations of Rju;. In [6], convergence
of a modi ed version of (2) to the solution u 2 H of (1) for both greedy
and random orderings has been established, together with quantttive
convergence rates under additional assumptions fou. The greedy case
is a direct generalization of earlier work by Temlyakov et al. on greedy
algorithms in Hilbert spaces. We state the quantitative error bound for
randomporderlngs from [6, Theorem 1 b)] which seems to be new: Let
i> 0, ., i=1, bean arbitrary discrete probability distribution, and
assumeu can be expanded as

u= Riu;; kKuika, M 5 i=1;2::1;
i=1

for someM < 1. If in the j-th step i = ij is chosen randomly and
independently with probability ; then the modi ed version of (2)

j+1:j+1
i +2

Uj+ !jRiW{;

where ! j is chosen such thatku  u?*! k2 is minimized, converges in ex-
pectation at a guaranteed rate of

E(ku wk3) 2kuki+ 2m?)(j+1) 1 j O

Simple examples show that faster convergence cannot be expedtender
these general assumptions. Further evaluation of the potentialbf greedy
and randomized versions of the multiplicative Schwarz method for aplica-
tions to adaptive algorithms, reduced order modeling, and regulariation
theory is underway.
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Regularization and Numerical Solution of Inverse Scatteri ng Problems
using Shearlet Frames

Philipp Petersen
(joint work with Gitta Kutyniok, Volker Mehrmann)

Scattering problems are concerned with the behavior of acoustic aves, radiation,
or particles, which are transmitted in a medium and are scattered atinhomo-
geneities of this medium, so called scatterers. The associated inw problems
aim to determine characteristics of the inhomogeneities from the agnptotic be-
havior of such scattered waves. This problem appears in various wors in di er-
ent application areas, e.g. non-destructive testing, ultrasound émography, and
echolocation.

The numerical solution of these problems usually su ers from the ill-ppsedness
of the problems. Hence a regularization is necessary. For this, s@ma priori
knowledge of the solutions of the inverse problems shall be employedndeed we
will model the inhomogeneities of the medium by functions from a spdal function
class.

Modeling of the Scatterer: Typically, a scatterer is a natural structure, which
distinguishes itself from the surrounding medium by a change in densjt In the 2D
setting, this inhomogeneity can be regarded as a curve with, presunably, certain
regularity properties. The interior as well as the exterior of this curve is usually
assumed to be homogenous.

In the area of imaging sciences, the class afartoon-like functions [2] is fre-
guently used as model for images governed by anisotropic structes such as edges.

A cartoon-like function is a function f 2 L?(R?) such that there exists a domain
D  (0;1)? such that @Dcan be parametrized by aC? curve and there exists
f1;f2,2 C2(R?) such that suppf; (0;1)2 andf = f;+ pfs.

This cartoon-like model is well-suited for many inverse scattering poblems,
where the discontinuity curve models the boundary of a homogeneass domain.
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Directional Representation Systems: Having agreed on a model, one needs
a suitably adapted representation system which ideally provides optnal approxi-
mation rates for cartoon-like functions in the sense of the decayfahe L?-error of
bestN -term approximation. Such a system can then be used for the redarization
term of a Tikhonov functional.

In [1] shearlet systems were introduced, which almost achieve theptimal ap-
proximation rate [3]. The sparse approximation properties of shedets were al-
ready used for dierent inverse problems such as separation of miphologically
distinct components [4], or reconstruction from the Radon transbrm [7].

In view of this discussion, shearlet systems seem a good candidate a regular-
izer for inverse scattering problems, and in fact this will be key to ou approach.

Application to inverse Scattering Problems: We examine two concep-
tually di erent approaches to numerically solve inverse scattering poblems. In
particular, we study a method to directly tackle the nonlinear problem, as well
as a linearization approach. As problem cases we focus on two inverscattering
problems, see e.g. [5], which are thacoustic inverse scattering problenand the
inverse scattering problem of the Schmdinger equationfor which we analyze the
strategy to linearize the inverse scattering problem by means of th so-called Born
approximation.

The acoustic inverse scattering problemaims to reconstruct a contrast func-
tion which encodes the scatterer by emitting an acoustic wave and masuring the
scattered waves.

The minimization of a suitable Tikhonov functional is a common approad to
directly solve this nonlinear inverse problem. In [6] a sparsity-basedegularization
term is introduced which uses thel P-norm with p close to 1 directly on the function
to-be-recovered. This regularization scheme is very successfulhen the object
under consideration has small support.

Following our methodological concept, and assuming that cartoorike functions
are an appropriate model for the scatterer, we instead choosesaegularization term
the ",-norm of the associated shearlet coe cient sequence withp larger or equal
to 1. We compare the two reconstruction approaches numerically ad observe,
that the regularization based on shearlets yields superior resultswer the LP based
regularization for cartoon-like scatterers see Figure 1.

In the second numerical approach we rst introduce a linearizationof an inverse
scattering problem. The inverse scattering problem of the Schredinger equation
aims to determine a quantum mechanical scattering potential frommeasurements
of backscattering data

A prominent method to linearize the inverse scattering problem is by neans of
the Born approximation.

Modeling the scatterer by cartoon-like functions, shearlets can b used again as
a regularizer, provided that the transition from the nonlinear towards the linear
problem does not in uence the fact that the solution belongs to theclass of cartoon-
like functions. It has been shown in [8, 9] that certain singularities ofthe scatterer
can still be found in the solution of the associated linearized problemHowever, all
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Figu re 1. Left: Contrast function with overlapping discontinuity curves,
Middle: Reconstruction using the shearlet regularization, Right: Lt
Tikhonov regularization.

these results require a global regularity of the scatterer to degibe the regularity

of the inverse Born approximation. On the other hand, in the case bcartoon-like
functions we have strong local but poor global regularity and theefore the results
of [8, 9] can not be applied to our situation. To provide a theoretical basis for
the application of shearlet frames, we prove that indeed the Born pproximation

to the Schredinger equation gives rise to a scattering problem thaexhibits sharp
edges in the solution of the linearized problem. In particular, we showthat the

cartoon model is almost invariant under the linearization process byproving the

following results.

Theorem 1.1. [10]Let > O, let s 2 N;s 2, and let, for some xy 2 RZ,
f 2 L2(R?)\ HS*xq) be compactly supported and real valued. Then the inverse
Born approximation fg satises fg 2 HS(Xo).

Corollary 1.2. [10]If f;f, 2 H3(R?), D (0;1)? and
f=fi+ pfy;
then the inverse Born approximation from backscattering d&a can be written as
fg=f{+ pf2+ vt +h’
where f3;f3 2 C2, v 2 C! andh® 2 Hz “¥or every > 0 and h® is only
supported on a neighborhood of@ D

Theorem 1.1 and Corollary 1.2 describe the regularity of the inverse Brn ap-
proximation from backscattering data, such that common approaches using spar-
sity in the shearlet representation can be applied.
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Recent Developments in Entropy Viscosity
Bojan Popov
(joint work with Jean-Luc Guermond, Murtazo Nazarov, and Yong Yang)

We consider the case of a scalar conservation law
ug+r f(u)=0

with initial condition u(x;0) = u®(x) in the domain (x;t) 2 Rs . The initial
data u® is assumed to be bounded and the uxf is assumed to be Lipschitz
continuous. We also assume that the boundary conditions are eithreperiodic or
the initial data is compactly supported. In the second case we are terested in
the solution in a time interval [0; T] such that the domain of in uence of u® over
[0; T] does not reach the boundary of . The purpose of these assunions is to
avoid unnecessary technical di culties induces by boundary condiions. Following
the seminal work of Kruskov [8], it is now well understood that this problem has
a unique entropy solution.

Maximum principle, entropy stability and convergence of viscosity agroxima-
tions for scalar conservation laws have been established a long timga. However,
on discrete level the same questions sometimes are a lot harder amdany results
were proven on uniform/restricted meshes and only for rst order schemes, see [9].
In this talk, we present two recent results in the case of scalar ndimear conser-
vation laws. First, we will derive a maximum principle preserving secondorder
scheme based on entropy viscosity. The new method preserves Riaum principle
on a large variety of nite element spaces general unstructured rashes in arbi-
trary space dimensions, see [6] for all results. This is a joint work wh Jean-Luc
Guermond, Murtazo Nazarov, and Yong Yang. Second, we will presnt a general
convergence framework for numerical methods for approximatig scalar nonlinear
conservation laws. Our approach is similar to the one of Bouchut andPerthame in
[1] but we relax their arguments using techniques inspired by [3, 4]. Asn appli-
cation of this framework, we will give a convergence proof of a niteelement based
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numerical method with graph viscosity as a stabilization. This result isvalid for a
large variety of nite element spaces on general unstructured mghes in arbitrary
space dimensions. The main result is as follows.

Theorem. [Guermond and P.] Letf be Lipschitz continuous, u® 2 BV () and
t, be the numerical solution generated by the graph viscosity stabilizdon. Then,
under a standard CFL condition (see [7] for details) we have the following conver-
gence result. If we have a BV bound orup( ;t), we have

ku(;T) un(;T)kiy  (T)hZjugjsy ()
Otherwise, we have
ku(;T) un(:Tkis  o(T)hjuo]
where|juoj? = jugjav() | i(iUoiZz, | Uitz ).

Note that, the the BV bound is well known in one space dimension but inthe
multidimensional case it is not know if it holds. Therefore, the generdconvergence
result is with a rate of % which is similar to the estimates in the nite volume setup,
see for example [2, 5]. This is a joint work with Jean-Luc Guermond, se[7] for a
complete description of the method and full details.
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Quarkonial frames and their connection to high-order schem es
Thorsten Raasch
(joint work with Stephan Dahlke, Peter Oswald)

We are concerned with quarkonial or subatomic decompositions otiction spaces,
as introduced by Triebel in [11, 12], and their connection to popular hgh-order
ansatz systems, like conformingp- or hp- nite element frames. The design of
guarkonial systems on a given domain R"™ merges spectral and multiscale
approximation strategies, e.g., by locally enriching a given hierarchy bpartitions
of unity with polynomial or trigonometric frames [6, 11]. Similar approaches are
well-known from the context of partition of unity methods [1, 5] and their multi-
level variants [9], as well as from the theory of fusion frames [2]. Saf, the concept
of quarkonial decompositions has only rarely been exploited in numéeal appli-
cations. We hope that the stability and approximation properties of quarkonial
systems might be helpful, e.g., in the convergence analysis of adapéwhp-FEM
and in solving preconditioning issues, similar to the impact of stable subpace
splitting approaches [7] on the development of hierarchical precaditioners.

In the univariate, shift-invariant case, one may consider translaed, dilated and
locally enriched cardinal B-splines' := Ny ( + bm=2c) of order m, e.qg.,

(1) ek =T p@x K ()= g() (X); P 0 k2Z;
where the enrichment functionsg, are globally or piecewise polynomial of degree
p. We refer to Figure 1 for an example of monomial B-spline quarks. Siitar to the
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Figure 1. B-spline quarks' , with m =2 and gy(x) = x°, p 0.

case of multilevel nite element systems [7], one can show [6, 11] thatppropriately
weighted quarkonial systems = fwpjk' pjk :P;J] 0,k 2 Zg can be a frame
for positive-order Sobolev and Besov space8; := Bg(Lq()), where s;q >0, i.e.,
the span of is dense in Bg and we have with frame constantsc;;c, > 0

X
2) c1kf kgg C>|rlf _ jCpj kit Cokf k%a; f 2 Bg:

p.J.k
The proof of (2) typically relies on approximation and regularity prop erties of
(3) Vjp =spanf' ,yk:0 p;0 bk 22zg p;j O

In the original work [11], (2) was shown via Fourier techniques, assming a C?!
partition generator ' and weightsw, j « with exponential decay inp. An inspection
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of the proof from the viewpoint of stable subspace splittings [7] reeals that these
assumptions can be relaxed considerably. The necessary approxation properties
of Vj , can be ensured by direct estimates of Jackson type. Moreoverhe weights
Wp,j,k only have to overcompensate the asymptotic behavior okvkg; =kvk.,, v 2
Vip, asj;p 'l , which can be measured by Bernstein inequalities like

(4) kvkg;  CBps2SkvkL,; V2 Vjp:

In the case of partition generators' of spline type and polynomial enrichment,
the constants By s scale like (1+p)?%, asp!1 , which is essentially due to the
Markov inequality.. Based on these observations, we showed in [6] #t p-algebraic
decaywpjk (1+ p)P2 I35, 2R, is sucient to verify the frame property of
in B§, with positive impact on the numerical conditioning of nite subsets of .

Moreover, we would like to point to the close link between B-spline quaks and
the Babiska-Shen basis [8] which is widely used irp- nite element methods,

r Z .
+

AR —S50= P b amdy p o2

6) o) = o= T -

Herel, are the L,-normalized Legendre polynomials on ( 1;1), see also Figure 2.
The set ofinterior shape functions (\bubble functions”) f' ,gp 2 isanHJ( 1;1)-

P

@ "o (b) "1 (O d "3

Figure 2. Babwska-Shen basis functions' , on ( 1;1).

orthonormal basis. Theouter shape functions' o and' 1 can be used to extend the
bubble functions to a Riesz basis oH!( 1;1) where exactly one basis function
is nonzero at each of the endpoints 1. Therefore, by glueing together' o and
"1(  2) to the hat function ' := N2(+Tl) on ( 1;3), the system

"o 2K):p 22k2Z [ '( 2k):k2Z

is a Riesz basis forH'(R). We have the factorization ' p(x) = gp(x)' (x) with
continuous splinesgp, goji2k 1,2k+1) 2 Pp 1, P 2. In other words, the Babiska-
Shen system is indeed of quarkonial type, with enrichment byC® spline functions.

A natural question arises whether quarkonial frames can be madstable in L
or even in negative-order Sobolev or Besov spaces. Similar to the & of wavelet
systems [3], frame elements can be endowed by vanishing moment perties. In
the univariate, shift-invariant case (1), one may take a wavelet mak f bxgkoz R
with m discrete vanishing momt;:(nts and de ne thequarklets

(6) p(X) = b' p(2x k); p O
k2z
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which then have m vanishing moments as well, regardless gi. We refer to Figure
3 for an example of linear, monomial B-spline quarklets based on the avelet mask

MVJ m

ol o0y

o )

f/\ :
015

@ o (b) 1 © -2 @ s

Figure 3. Monomial B-spline quarklets for the CDF(2,2) wavelet mask.

from [4] with two vanishing moments. Thanks to the vanishing momentproperty,
an appropriately weighted system

fwor' p( K):p Ok22Zg[f wojk p@  K):p;j Ok2Zg

is indeed a frame forL4(R), where 1< q < 1 and the weights wp x and wp j «
decay algebraically inp.

Current research focuses on the compressibility of di erential aml integral oper-
ators in quarklet coordinates, in the spirit of [10], aiming at the designof adaptive

discretization schemes for operator equations with guaranteedxponential conver-
gence.
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Hierarchical tensor representations and tensor networks
Reinhold Schneider

We consider tensor techniques for the numerical solution of high diransional
PDEs. Examples are Schmdinger, Fokker Planck and boundary vaue problems
with uncertain parameters, which, by Wiener Ito chaos polynomials isturned into
a parametric PDE setting. We highlight the second quantization for the fermonic
multi-particle Schredinger in a (discrete) Fock space setting.

Although several statements are valid in the in nite-dimensional sdting, we
often consider a xed discretization of the operator equations. let Vi;:::;Vq
Hilbert spaces, orV; = L?(R) or Vp = H3(D). When we invoke a discretization
Vi = R™ . An order-d tensor over these spaces is then given by any 2 ¢, V;:
Let us interpret such tensors as multivariate functions

U: I I g ! R; x=(X1;::5:%Xg) 7V U(Xg;:::;Xq);
with index sets | ; to be either discrete, e.g. 1 = f1;:::;n;g in case thatV; =
R™, or continuous, e.g. Ii = R in the case that, for instance, V; = L?(R).

Such tensors play an important role in the description of many compl& systems.
At the latest after a discretization, tensor quantities take on n9 di erent values

least exponential in d, known as the curse of dimensionality. Even ifn is small.
e.g. n =2, for large d, e.gd = 300 it is impossible to handle the full tensor. Tensor
product approximation aims to approximate these tensors by sum & products of
univariate functions. Such a multi-linear representation may redue the number
of parameters, fromn? to O(nd) with a constant depending on the number of
terms in the sum. This seems to be appealing, nevertheless thereeafundamental
problems with this rather simple and canonical idea. The parametrizaéion of the

canonical form is no longer linear and does also destroy an original ogexity of the

problem. Instead of acurse of dimensionsthere appears acurse of non-linearity
or curse of non-convexity

The Hierarchical Tucker tensor format (HT) (Hackbusch-Kshn) and Tensor
Trains (TT) (Tyrtyshnikov-Oseledets), introduced recently o ering stable and ro-
bust approximation by a low order cost, see [3]. The representatiorof these
tensors can be described byensor networkswith tree structure, already known in
guantum physics. We would like to demonstrate that with this approach we can
overcome most of the obstructions mentioned above.

We consider mainly TT tensors, known as matrix product states in physics,
as a prototype example. The appearing component tensors are édw order, e.g.
for binary trees they are of order 3, independent of the original oder d. For
example, the TT format provides a special case of hierarchical tesor formats. Here
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or explicitly
e 1

= - Ui(X1; k1)Uz(K1; X2;k2) 22 Ug 1(Ka 2;Xd 1;Ka 1)Uda(Kd 1; Xa):
k1=1 kd 1=1

The numbersr;, de ne the rank numbers of the TT decomposition or the rank

Letting r = max r;j, storage of the TT decomposition isO(r?nd) and is thus
formally free from the curse of dimensionality.

The important observation is that the hierarchical tensors inherit major prop-
erties from low rank factorization of matrices. In other words oneapplies matrix
analysis to treat the tensor case. Given a partition tree, then theoptimal ranks
are de ned by the rank of the correspondingmatricisation or matrix unfolding A,
see [3]. This observations holds for most operators, can be assudir right hand
sides. Even more operation like Summation, application of operatorgo tensors
can be performed in this format. We are looking for those solutions Wwich can be
approximated su ciently accurate in the present form.

The set of tensors of prescribed rank is neither a linear space nooaovex. It has
been shown, partly by the author [7], that given a tree, the set hiearchical tensor of
optimal rank forms smooth (open) manifoldsM . For numerical computations, we
cast the computation of an approximate solution into an optimization problems
constraint to this manifold. In particular, for approximation by elem ents from
this highly nonlinear manifold , we apply the well known Dirac Frenkel variational
principle, see e.g [5],

U(t) =argmintkV.. (A +B)( t)+ f(t)k:V 2Tyg:

By straightforward manipulations, this provides the equations of motion in weak
form,

hl+(A B ) f;Vi;, 8V2Ty;U0)= o02M :
In [6], we have analysed the (open) manifold of such tensors and itsrpjection onto
the tangent spaceTy at point U(t) 2 M , . First convergence estimates inL, has
been derived, providing quasi-optimal converge local in time, i.e. fo® t T, T
su ciently small. The Dirac Frenkel principle is a Galerkin approximation , where
the di erential equation has to be satis ed in weak form on the tangent spaceTy
at each time U(t). The Lojasiewich inequality allows to prove convergence of the
Riemannian gradient iteration [9] to stationary points, only.

Therefore there remains still a curse of non-convexity. In'»(l ) a quasi-optimal
approximation can be found from the singular value decomposition othese ma-
trices, the HSVD, originally derived by Vidal, and afterwards independently by
Oseledets and Grasedyck, see e.g. [3, 4]. This can be used to coostr(adaptive)
iterative methods by hard (Dahmen & Bachmayr) and soft threshdding opera-
tions [1]. These methods are shown to converge to the exact soluticstill retaining
guasi-optimal approximations bounds.

However the analysis of the these bounds is still fairly open. BesN -term
approximation results has been derived from this observation in a reent paper
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[8]. Let Ay = UT V ;(SVD) =diag( ;) be the singular value decomposition
of the unfolding at a nodet in the tree. ForO<p 2, vI\:/)e refer to the the nuclear
1

norm p = 1 and Schatten class quasi-norm&A (k , := i Ei P : Assuming that
KAK p:=max¢kAk p, < 1, andjrj:= maxfrig. Then, by Stechkins lemma it
follow that the best rank r¢, for s := % % best N-term approximation by rank r.
can be estimated by
inf kU Vko. C(d)jrj °kAK
fv:ranks of v rg

with a prefactor C(d) . P d ; scaling mildly with d. Notice that the complexity
scaleslU . djrj® (HT), (. ndjrj? (TT)). It has been shown [8] that mixed Sobolev
spacesare embedded in these classes. Perhaps, due to the complexity &ng
O(r?), these results are only suboptimal for these classes.

A comparison of di erent formats is summarized in the following table

| | canonical | Tucker | HT |
complexity O(ndr) O(r?+ ndr) | O(ndr + dr®)
TT- O(ndr?)
++ { +
rank no de ned de ned
e rr rr Tkt [fc
(weak) closedness no yes yes
ALS (1site DMRG) | yes - but slow yes yes
H (O) SVD no yes yes
embedded manifold no yes yes
Dirac Frenkel no yes yes
algebraic var. M no yes yes
recovery ?7? yes yes
guasi best approx. no yes yes
best approx. no exist exist
but NP hard | but NP hard
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High Order, Quasi Monte-Carlo Petrov-Galerkin Discretiza tion for
countably-parametric operator equations

Christoph Schwab
(joint work with J. Dick, F.Y. Kuo, T. LeGia, I.H. Sloan)

We construct quasi-Monte Carlo methods to approximate the expeted values of
linear functionals of Petrov-Galerkin discretizations of parametric operator equa-
tions which depend on a possibly in nite sequence of parameters.

Such problems arise among others in the numerical solution and in coputa-
tional uncertainty quanti cation for di erential and integral equ ations with so-
called \distributed random input data" (random eld inputs) cp. eg. [1, 2,
3]. A ne-parametric, in nite-dimensional deterministic operator e quations re-
sult from uncertainty parametrization by, eg., Karhunen-Loeve expansion of the
random input data. We analyze the regularity of the corresponding paramet-
ric solutions with respect to the parameters in terms of the rate ofdecay of
the uctuations of the input eld. Based on analytic continuation or on a real-
variable, \bootstrapping" argument, we show in [8] that if p 2 (0;1] denotes the
\summability exponent" corresponding to the uctuations in a ne- parametric
families of operators, then deterministic \interlaced polynomial lattice rules" of
order = bl=pc+ 1 in s dimensions with N points can be constructed using a
fast component-by-component algorithm, inO( sN logN + 2s?N) operations,
to achieve a convergence rate oO(N /P), with the implied constant indepen-
dent of s. This dimension-independent convergence rate is superior to theate
O(N /P*172) for the range 2=3 p 1, with implied constants that are inde-
pendent of the dimensions, recently established in [12] for randomly shifted lattice
guadrature rules under analogous assumptions. The Quasi Mont€arlo quadra-
ture error analysis in [6, 4, 8] is developed for a ne-parametric opeator equations
with bounded parameter domains. Extensions to holomorphic-paranetric opera-
tors are in [6], with regularity results from [5]. Partial extensions of the theory
for rst order Quasi Monte-Carlo quadratures to elliptic PDEs with log-gaussian
random inputs are provided in [10].

Multi-Level versions of the presented algorithms were rst analyzed in the a ne-
parametric, uniform case for rst order lattice rules in [11] where it was shown
the judicious combination of mesh-dependent Quasi Monte-Carlo gadratures can
provide substantial gains in complexity, subject to suitable regulaity.
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The Quasi Monte-Carlo quadrature error analysis is based on a nel, non-
standard Banach space setting for the error analysis of Quasi Mue-Carlo pro-
posed recently in [14] and on \smoothness-driven product and orelr dependent
(SPOD)" weights proposed for higher order Quasi Monte-Carlo inegration in [8].

A new, so-called fast CBC construction (quadratically scaling in the dmensions
of the integration domain) proposed in [8] shows that the asymptoic error bounds
are attained already for moderate dimensionss ' 10;:::; 1000, and for as few as
N = O(10?) lattice points.

The implementation of the nite eld algorithms in [9] for the fast Comp onent-
by-Component construction of the generating vectors, based o original ideas of
[13] of the lattice rule is shown to exhibit the asymptotic complexity bounds al-
ready from dimensions = 10 upwards.

Detailed numerical experiments in [9] show, in a number of countablyparametric
model elliptic PDE integration problems, the predicted, dimension-independent
convergence rateO(N 1/P) where the exponent Ep depends only on the sparsity
parameter p 2 (0; 1] of the distributed, parametric input.

Work of CS supported by ERC AdG 247277.
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Discontinuous Galerkin nite element approximation of
Hamilton{Jacobi{Bellman equations with Cordes coe cient S

lain Smears
(joint work with Endre Sali)

We propose a novel approach to the numerical analysis of fully nonliear second-
order elliptic and parabolic Hamilton{Jacobi{Bellman (HJB) partial die rential
equations. For example, consider the Dirichlet boundary value prokem

sup[L% f9=0 in ;

a2

(1)
u=0 on @ ;

where is a convex domain in RY, d 2, is a compact metric space, and the
nondivergence form elliptic operatorsL®, 2 , are de ned by

(2) L% = a%: D%+ b* rv v

These equations arise from models for the optimal control of stdwastic pro-
cesses. Stochastic control problems encompass a diverse setapplications from
engineering, economics and nance, including examples such as indusal pro-
duction planning, option pricing, and portfolio investment. The study of HIB
equations thus continues to be an active research area.

Furthermore, HIB equations constitute an important example of fully nonlinear
second-order elliptic equations. The theory of viscosity solutions pvides a general
solution theory for this family of equations, and its relevance to HIJBequations was
among the main motivations for developing the theory [3, 8, 9]. Recalkhat the
regularity theory centered around the celebrated Evans{Krylov Theorem estab-
lishes interior C2:B-regularity of the viscosity solution of fully nonlinear uniformly
elliptic equations with convex nonlinearities [1, 4, 7]; this applies to (1) povided
that the di usion coe cients a® satisfy the usual uniform ellipticity condition.

We summarise here the contributions of our papers [11, 12, 13, 1dh hp-version
discontinuous Galerkin nite element methods (DGFEM) for uniformly elliptic and
uniformly parabolic HIB equations with Cordes coe cients. In order to focus the
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discussion, we concentrate on elliptic HIB equations of the form (1)although we
note that we have extended our method and analysis to parabolic agations in [14].

The Cordes condition is an algebraic assumption on the coe cients othe equa-
tion, and it encompasses a large range of possibly strongly anisotpa applications.
The Cordes condition requires that there exista > 0 and an" 2 (0; 1] such that,
foreach 2

2 + P2 + (=)t 1
(Tr a® + co= )? d+" ’

where jj represents the Euclidian norm for vectors and the Frobenius normfor
matrices.

The motivation for applying the Cordes condition to HIB equations stems from
the literature on nondivergence form PDESs, for which it is well-knownthat uniform
ellipticity alone is generally not su cient to guarantee well-posedness|2, 5, 10] in
more than two dimensions. Moreover, it is also known that HIB equaions are
naturally related to nondivergence form PDE through the fact that linearisations
of HIB operators are in nondivergence form.

Although the PDE (1) does not admit a weak formulation, it does admit an
equivalent formulation as a variational problem A(u;v) =0 for all v 2 H?() \
H3(), with A a nonlinearzform de ned by

3)

(4) A(u;v) = FylulLavdx; Lavi= v v,

where Fy is a renormalisation of the nonlinear operator of (1). The Cordes co-
dition leads to a key stability result in the form of a strong monotonicity bound:

(5) ku VK - A(usu V) A(v;uov) 8u;v2 HZ() \ Hg() ¢

This enables the application the Browder{Minty theorem to show exigence and
uniquness of a solutionu 2 H?() \ H3() of ().

In [13], we construct a discrete analoguéAy, of the nonlinear form A, leading
to the numerical scheme of nding un 2 Vi, such that An(un;vn) = O for all
Vh 2 Vh,p, Where Vy,, is the DG nite element space. The method isconsistent
in the usual sense of Galerkin type methods. The main challenge hower is to
achievestability through a discrete analogue of the strong monotonicity bound (5)
This is achieved by relating the residual of the equation to terms meauring the
lack of H 2-conformity of the numerical solution.

The stability and consistency properties enable the derivation of eror bounds.
In the special case of quasi-uniform meshes of sibeand quasi-uniform polynomial
degreesp, provided that u 2 H3(; Tn), s> 5=2, the error bound is of the form

hmin( ptl,s) 2

(6) ku upkn . KuKps(y -

pS 5/2
where the normk ky, is the broken H2-norm. Importantly, these bounds do not
depend on the anisotropy of the problem, except through the costants appearing
in the Cordes condition. Therefore, our method is able to exploit anyavailable
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regularity of the solution and yield high-order accuracy for strondy anisotropic
problems, as shown by our numerical experiments in [13]. Ihp-re nement is
employed, it is even possible to achieve exponential convergencetea of the form

ku upkn' exp( c” DoF), where DoF is the number of degrees of freedom, even
for rough solutions with singularities in parts of the domain.

In practical terms, the implementation and algorithmic aspects of the method,
such as memory costs, are the same as those of usual DGFEM fdligtic problems.
In [11, 13], it is shown that a combination of a semismooth Newton metbd and
nonoverlapping domain decomposition preconditioners allows the fasand e cient
solution of the discrete nonlinear problem.
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A perturbation-method-based post-processing of planewav e
approximations of nonlinear Schedinger equations

Benjamin Stamm
(joint work with Eric Canes, Geneveve Dusson, Yvon Maday, M artin Vohralk)

In this talk, the Gross-Pitaevskii equation serves as a toy problemfor methods
arising from the Density-Functional-Theory (DFT). Indeed, the f ollowing theory
can be generalized to some planewave approximations of DFT-modelsWe use
this simpler problem to illustrate the technical key-arguments of the theory which
are identical to those for the DFT Kohn-Sham LDA-models. We note also that
the Gross-Pitaevskii equation plays also an important role in the simdation of
particle-systems consisting of Bosons.

We consider the minimization problem
n 0

inff E(v) V2Hg() ;kvkz=1 ;

where the energy functional is gZiven by
h [
E(v) = jrviZ+ VA + vt

for some real-valued potentialV 2 H2 (), s> d=2. Then, there exists a unique
real-valued positive minimizeru 2 HZ (). The Euler-Lagrange equations are then
givenby: nd 2R, u2H}()suchthat kuk._=1and

(1) u+ Vu+ ud= u; in

We consider the ground state so that denotes the lowest eigenvalue of the mean-
eld operator H, = + V + u? and plays the role of the Lagrange multiplier
associated to the constraintkvk . = 1. Let us denote by X the space spanned
by planewaves up to a certain wavenumberjkj < N and N : HZ() ! Xn
the orthogonal projection onto X . The planewave approximation to (1) is then
given: nd N 2 R, uny 2 X such that kunyk 2 =1 and

(2) un + N V jUNj2 Un = NUNG in

Again, | isthe lowest eigenvalue of the discrete HamiltoniaHy = + N V+
- .2

JUNJ N -

In this talk, we presented the key-arguments of a post-proce$sg upon uy
de ned by

(3) N = Un o ( N) 1rN;
wherery is the residual de ned by
rn o= Un + Vun + junj?un NUN 2 X

The second term of the right-hand side of (3) denotes the leadingerm of the rst
order correction of an underlying perturbation argument. Indeead, we consider the
exact solution (;u ) as a perturbation of the discrete planewave approximation
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( ~;un) and apply Kato's perturbation theory in order to show that the Ra yleigh-
Schmdinger series in the perturbed system

X . X
Hn+ (Ho Hp) Ju(,\J,) = J Ej) Juf\J,)
J J J
converge for =1 if N is su ciently large.

From a practical viewpoint, we observe thatry 2 X7 so that we need to
compute the residual in a larger spaceX n,.. - The most expensive part in terms
of operations is to computeV uy + junj?un Which requires applying twice a Fast
Fourier Transform (FFT) on a larger grid based on Xy, . Finally we presented
the main theorem.

Theorem. [1] There exists a positive real constantC, independent of N and
S, such that for all N su ciently large, there holds

ku tnkg: CN 2ku Unkpz + Cku  unky 1

In combination with a priori results developed in [2] we obtain that
ku tnky:  CN (s+3) -

in the asymptotic limit. We ended the presentation by showing some nunerical
example in the case of DFT Kohn-Sham LDA-models showing an decraa in the
error already from a pre-asymptotic stage on.
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From Perfect Derivatives to Conservative Di erences
Eitan Tadmor

Entropy stability plays an important role in the dynamics of nonlinear systems
of conservation laws and related convection-di usion equations. Wat about the
corresponding numerical framework? we present a general thep of entropy sta-
bility for di erence approximations of such nonlinear equations. We demonstrate
this approach with a host of rst- and second-order accurate shemes ranging from
scalar examples to Euler and Navier-Stokes equations and we conde with recent
computations of entropy measure valued solutions based on the da of arbitrarily
high-order accurate and entropy stable TeCNO schemes.

Entropy-conservative and entropy-stable schemes. We consider semi-dis-
crete conservative schemes of the form h )

d 1 !
(1) —uy(t)= -

dt Xy
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serving as consistent approximations to systems of conservatiolaws u¢+ f(u)x =
0. Here, u,(t) denotes the discrete solution along the grid line Xy ;t) with  x, =
%(xvﬂ Xy 1) being the variable meshsize, and,,, L being the Lipschitz-continuous
numerical ux consistent with the di erential ux, fv+% = f(uy p+1;iiiUysp).
The numerical ux, f(; ;:::; ), involves a stencil of 2» neighboring grid values.
We are concerned here with the question oéntropy stability of such schemes.
Let ( ;F ) be an entropy pair associated with the systemu¢ + f(u)x = 0. We
ask whether the scheme (1) isentropy-stable with respect to such ahpair, in

the sense of satisfying a discrete entropynequality g (uy (b)) +
[

Fv 1 0, analogous to the entropy inequality (u)¢+ F(u)x O. Here,F,, 1 =

Fus 1
v+
v 2

In the particular case that equality holds, we say that the scheme ) is entropy-
conservative

The answer to this question of entropy stability provided in [7] consids of two
main ingredients: (i) the use of the entropy variables and (ii) the conparison with
appropriate entropy-conservative schemes. We conclude this section with a brief
overview. De ne the entropy variablesv := %u) $ u. Making the changes of
variables u, = u(v,), the scheme (1) recasts into the equivalent form

q 1 h [

2) GUO= ey fy oy s u(® = U ();

2

consistent with the di erential ux, f(u(v)). We ask whether (2) is entropy con-
servative that is | given an entropy , nd a numerical ux f . such that

2

s Ty s ]

=0 :)

d Forz Fy 1
g )+ ———+ =0:

d
auv(t) +

In other words, we are looking for a recipe of entropy conservatie uxes f
?

such that  Yuy) ; fv+% f, o ! Foetg Byt which in turn would imply

2
the entropy conservation |, (uy(t)) x = v (uy(0)) x. Expressed in terms
of the entropy variables, the entropy conservation requirement %uy); fet
2

1
\)+2

f, L = Forr Fy %,reads

erfect _di erenc erfect . di erenc
pertect (i erence. - perecyfierency
v\,;fv+% f, L if and only if vy41 vv;fv+% :
D E
and we concludethatf\”% IS entropy conservative if vy1 v\,;fv+% = (Vy+1)

(vv), where (v)isthe entropy ux potential, (v):= v;f(v) F(u(v)). This
brings us to the following.
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pheorem 1.1 gTadmor, 1987 [7]). The conservative scgeme (2) is engropy-stable if
V. %;f\,+ L vt b and entropy-conservative if v, %;fv+ . = -
2

1,
2

Scalar examples. We begin by noting that in the scalar case, (u)f (U)x=(:::)x
| all convex 's are entropy functions, and the corresponding entropy consemtive
(Vy+1) (W)

Vy+1 Vy

uxes are given by f

1 =

Example 2 (Burgers' equation). Consider the inviscid Burgers' equationu¢ +
. . 1 1
(2u?)x = 0 augmented with the quadratic entropy (Euz)t + ( §u3)X = 0. The

entropy variable v(u) = u and entropy potential (v) := vf = %u3 yield the
entropy conservative ux which is the \ %-rule"

d 2 u\2;+1 u\2) 1 1 Uy+1 Uy 1 X 2
—uy(t)= = ———— - uy————— us(t) x=Const:
av W= 3 4 x 377 2 x v(t)

The point we make here, is that the same derivation applies to any sdar
conservation law and any convex entropy. Consider thelinear casef (u) = u
with the quartic entropy (u) = u®=4. Here,v = u® and (u) = 2u* yield the

_ 3ul us .
second-order conservative uxu,,, = — = —~—=——%_ Observe that this is
2 u 4uy,,  Ud

a second-order accurate di erencey, , 1 Uuey such that both = (u,, LN %)

and  ud(u u, .) are conserved.
2

v+ 1
Systems of conservation laws.  Our study of entropy stability is based on com-
parison with entropy-conservative schemes. In the scalar casentropy-conservative
schemes are unique (for a given entropy pair). For systems, ther are various
choices for numerical uxes which meet the entropy conservatiorrequirement in

theorem 1.2. In this section we present the general framework deloped in [8].
We present a family of entropy-conservative schemes which enjgyan explicit,

closed-form formulation. To this end, at each cell consisting of two neighbouring

values v, and vy+1, we let rf}+ 1 ?:1 be an arbitrary set of N linearly inde-
2

pendent N -vectors, and let ‘{H 1 ;.\'_1 denote the corresponding orthogonal set,
L=

J o irk . = k. Next, weintroduce the intermedia[t)estates, V{Hé N | start-

19 =1
V+5 V+§ j—l

ing with v\1}+% = vy, and followed byvf;l% = vf}+%+ ‘{H%; Vs 1 rf}+%; j =

J=1
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Since the mappingu 7! v is one-to-one, the path is mirrored in the usual phase

. . i i N+1 . .
space of conservative variables,u , := u v! starting with u\lﬁ% = Uy

2 vtz o =1
N+1 _

1 = Uy+r -
V+§

and ending with u

Theorem 1.2 (Tadmor , 2003 [8]). Fix an entropy pair ( ;F ) and let denote
the corresponding entropy ux potential (v) := hv;f(v)i F(u(v)). Then the
numerical ux, f . ., given by

XN vt vioooo
v+ 1 vt 2o
(4) f L= T2 2 J .
V+7' ~] . v . V+%’
j=1 v+%’ v+ 5
h i

. : d 1
IS an -entropy conservative such thata (uy (b)) + ' Fob.: F, » =0.

v 2 2

We demonstrate our approach in the context of Euler equations. V& begin with
the entropy decay in the Navier-Stokes equations

2 3 2 3 2 0 3 203
m
@ g o(E + p) @ =

The viscosity and heat dissipation of the right dictate an entropy dissipation

P R e e S -
(CS)+(as+ (= (+2) & 1&g

We now seek the entropy conservative ux,f ., which produces noarti cial

numerical viscosity; namely, we should end with the precise entropy balance

8
d o) + vl F, - < 0O A - ) Euler eqg's,
dt v X o _q ? } + 29} 0; NS eg's.
X X

An entropy conservative ux for Euler equations was computed in [9. The
entropy variables associated with (u) = S are ,(u)=[ E=e S+ +1;
g=; 1= T ;the corresponding entropy ux potential amountsto (v) = hv; fi
F(u) =( 1)m. We choose a path in phase-space along the eigensystem of

the Jacobian | an approximate Riemann path. We end up with the entr opy
. . - Xomitt omi
conservative ux, given in an explicit form f, . =( 1) — )
2 j=1 hJ v Vs %I
No arti cial numerical viscosity is present.

Higher-order extensions | the class of TeCNO schemes. In [2] we in-
troduced the classarbitrarily high-order entropy-stable schemes | the TeCNO

IThe notations fg and f%‘note proper average values.
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schemes. This was achieved by coupling entropy-conservative wes coupled with
high-order di usion based on ENO reconstruction of cell-interfacesv, .. The re-

sulting class ofarbitrarily high-order entropy-stable uxes take the form [ L=

+

F(V)vet %DW Lhvi vt 1 where hvi R T Is the jump across the
cell interface. The ENO reconstruction has an importantsign property hvi 1
Vs %(!) which was judiciously used in [2] to tune the entropy stability of any
order. These schemes were used in recent computations erfitropy measure valued
solutions of 2D Euler equations [3]. The point we make here is that thesfailthful
computations require high-resolution without arti cial numerical v iscosity. This is

precisely what the TeCNO schemes provide. They enable us to explerthe ques-
tion of what computed quantities are encoded inunstable 2D Euler computations.
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A fast-marching method for non-monotonically evolving fro nts
Alexandra Tcheng
(joint work with Jean-Christophe Nave)

The following treats the development of a new algorithm tracking nonmonotonical-
ly evolving fronts using nite-di erences. This is the subject of my P hD thesis,
supervised by Prof. Dr. Jean-Christophe Nave.

Front propagation is a time-dependent phenomenon occurring whe the boundary
between two distinct regions of space is evolving. It is possible to makthe dis-
tinction between monotone and non-monotone motion of fronts. For example, a
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re evolves monotonically in that, if a point x of space belongs to a burnt region,
then it cannot belong to an unburnt region at a later time [1]. Given an initial
front G as a codimension-oneC! subset of R", let each point of the front evolve
with a given speedF : R" [0;T]! R in the direction of the outward normal
to the front "¢ : G ! R". The resulting non-linear evolution is such that even if
F and G are smooth, the front may becomeC® and undergo topological changes
[2]. Numerical algorithms tracking interface propagation aim to recoer the front
G at later times t > 0.

On the one hand, a robust but computationally expensive numericalmethod
for tracking either kind of evolution is the Level-Set Method (LSM) [1]. On the
other hand, the Fast Marching Method (FMM) [3, 4] may be used when F (x)

> 0, and is therefore suited for monotone propagation. This approeh builds
the rst arrival time function , e., t = (x) gives the unique time at which
the front reaches the pointx 2 R". The FMM nds by marching the front at
a computational speed that isoptimal. The purpose of the work described below
was to develop an algorithm able to handle speed functions changinggn while
featuring a computational complexity comparable to that of the FM M.

In [5] and [6], we consider the seM := f(x;t) : x 2 Cig consisting of the surface
traced out by the fronts as they evolve. IfM embeds inR" (0;T) as a Ck-
manifold of dimension n, then each point (x;t) 2 M belongs to a neighbourhood
that is locally the image of a CK-function of n variables. We describeM locally
with functions of the form (u) where the n variablesu = (u1(x;t);:::;un(Xx;t))
parameterise some hyperplanelying in R™ [0;T]. We show that :R"! R
solves a Dirichlet problem of the form:

0 in U R"

(1) H(u; (u);r (u))
Un+s1 (X;t) onx 2 C\V

(u(x;t))

for appropriate neighbourhoodsU and V, where un+1 is normal to the plane. As
with the FMM, points sampling M rst belong to the narrow band set N before
they are moved to the acceptedset A. However the pointsp 2 M are no longer
required to lie on any grid. Rather, when the point p, 2 N with the smallest time
value is accepted, the algorithm works in theu-un+; -coordinate system to nd a
new point belonging to M . To this end, the relation H(u; (u);r (u)) =0s
discretized using nite-di erences. Then, given a location u; and another point
pp 2 M , we may solve for (in+1 )¢ USing either a direct or an iterative solver. To
determine the coordinatesu., a constrained optimisation problem is solved. The
objective function f captures the accuracy of the solvers, whereas the constraints
ensure that both causality is enforced into the solution, and the sampling ofM
is even The nal output is a discrete sampling of the manifold M . Figure 1 (a)
& (b) features one such set, where it is visible that the sampling ofM is highly
regular. First order convergence is observed; see Figure 1 (c).

If my talk, I will elaborate on the non-linear optimisation problem lying a t the
heart of this algorithm and present more results.
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Figure 1. (a) & (b) Inthisexample,F =1 2t, and G consists

of a circle. (c) Convergence results for the example illustrated on
(@) & (b) (global truncation error).
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Adaptive Wavelet BEM
Manuela Utzinger
(joint work with Helmut Harbrecht)

Introduction

We consider the adaptive wavelet boundary element method for thesolution of
boundary integral equations in three dimensions. Partial di erential equations are
frequently encountered in science and engineering, some of whiclarc be formu-
lated as boundary integral equations. Apart from reducing the dimensionality of
the problem, this is also a way to handle the in nite expansion of the danain in

case of an exterior problem. Some situations (e.g. domains with edgend vertices)
require a strong re nement in certain parts of the geometry. Whee uniform re ne-

ment would lead to huge systems, an adaptive approach saves a lagamount of
computation power and memory. Even though the dimensionality of he problem
is reduced drastically, the involved linear system of equations is demdy populated.
By applying the wavelet compression [4, 6], we end up with a quasi-spae system
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matrix. This means that the matrix is not sparse per se, but many médrix entries
can be neglected without compromising the accuracy. Thus, aftecompression,
only O(N) relevant matrix entries remain.

Exterior Dirichlet Problem for the Helmholtz Equation

Acoustic scattering at a three dimensional object R2 can be described by the
exterior Helmholtz equation

U+ 2U=0 in o :=R%n ;

with k =2 = being the wavenumber and the wavelength, describing the oscil-
lation of the incoming and the scattered wave. Depending on the chacteristics
of the scatterer, the boundary conditions are chosen approprily. Additionally,
in order to be a solution to the Helmholtz equation, the function U must ful I
the Sommerfeld radiation condition, ensuring the uniqueness of theolution U.
We reformulate the problem by using the fundamental solution

1 eika vk

SOV ek

for x and y in R3. With the acoustic single layer and the acoustic double layer
potential

z z QEXy)
(Su)(x)=  E(y)u(y)d y and (Du)(x)= @—0 u(y)d y
we end up with the boundary integral equation
D+ %I u=f

for Dirichlet problems. If 2 is an eigenvalue of the interior Neumann problem,
then the solution is not unique anymore. Brakhage and Werner [1] this came up
with the ansatz U = (D i S)u, leading us to the boundary integral equation

Lu= %+D IS u=f on
with > 0.
After introducing the variational formulation and the Galerkin proj ection, we ar-
rive at a linear system of equations to solve. Depending on how we close the basis
functions in our ansatz space, the resulting structure of matrix d ers. Namely, if
we choose a wavelet basis, many matrix entries can be neglected waht compro-
mising the accuracy. This is because the wavelets are supposed tave vanishing
moments of a certain orderm, meaning that

z

X% jk(X)dx=0 forj j<m:
1
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This property, together with the asymptotic smoothness of the kernel, implies the
following estimate for the matrix entries

diam(supp i)™ diam(supp k)™
dist(supp i; supp i)2*2a+2m

ihL ; diz() |

From this estimate, we see that wavelets having a large distance fra each other
result in a small matrix entry. To make the compression even more e cient, we
use a second compression, having an e ect on the other wavelets avell.

Adaptive Wavelet Schemes

With adaptivity, there comes a whole new theory [3, 5]. Without going too much
into detail, we just want to mention one estimate and to introduce the basic idea of
what our goalis. Letu 2 “?(J ) (with respect to some index set] ), un 2 2(J ) its

bestN -term approximation and  an H '()-normalized wavelet basis. Obviously,

there holds that u:= u. For u2 H%?5(), where s s:= % there holds the
estimateku unk CN S. Now, if u2 BY2sS()with =(s+1=2) 1, then

ku unk CN °

with BY2S() being a Besov space.

In order to get an adaptive data structure for the adaptive code we use wavelet
and element trees instead of arrays. To preserve the tree stringre of the wavelet
basis, we use the besiN -term tree approximation which is nearly as good as
the pure N -term approximation. Our aim is to nd the approximate solution in
optimal computational complexity O(N).

The adaptive algorithm works in the steps:

\solve|! | estimate|! |mark|! \rene |:

Starting with a small set of wavelets, we solve the linear system of agations.

With this and an estimated residuum at hand, we start an iteration where our
goal is to add the required new wavelets. In each step of the iter&bn, we coarse
the developed index set by a xed percentage. After the set of weelets has
been increased in this growth process, we solve the newly formed liaesystem of
equations. With this newly developed algorithm, we are able to re ne b times or
more where it is necessary, which would be unthinkable (in terms of nmaory) for

a uniform scheme.

Numerical examples

To conclude, we present a numerical result. On the Fichera vertexve solve the
exterior Helmholtz problem with the Brakhage-Werner formulation. We use piece-
wise constant wavelets with three vanishing moments and the Dirichle data is
chosen as the functiong(x) = E(x;a) with a = (0:55;0:55;0:55) and =1 for the
wavenumber.
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0 Brakhage Werner formulation on the Fichera vertex
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The left gure shows us the density on the geometry, whereas in te gure on the
right side we see the norm of the evaluated potential and the residal error versus
the unknown, showing the expected rate of convergence.
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hp -Discontinuous Galerkin Time Stepping Discretizations
Thomas P. Wihler

The discontinuous Galerkin (dG) time stepping scheme has been invégated in
various works (see, e.g., [1, 9]), and studied within thehp-context in, e.g., [6, 7,
8]. Due to its great exibility with respect to the local time steps and t o the
approximation orders, the hp-version dG scheme is well-known to be capable of
resolving both local singularities as well as areas of smooth behaviat high-order
algebraic or even exponential convergence rates.

hp-Setting. In order to de ne the dG scheme, let us consider time nodes 0 =
to <ty <:::<tmi1<tm = Tonaninterval [0;T], T > 0, which intro-
duce a time partition into local intervals I, = (tm 1;tm) of (possibly varying)
length km = t,m  tm 1, m=1;2;:::M. Furthermore, to each time interval |,
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we associate a polynomial degree, 0, and collect these quantities in a vec-

tor r = fry;ro;:::;rmg. Based on this setup, let us de ne, fors 2 Ny, the
polynomial space
( e )
PSJ;H)= v2COJ;H): v(t) = ajt); a5 2 H
J=0

on an interval J R, with values in a real Hilbert spaceH (with inner product
denoted by (;;:)n, and norm k:ky). Moreover, &)r p2[L1]andu 2 LP(J;H),
we de ne the Bochner norms kukipg;1y = ( 5 ku(t)kP, dt)% for p 2 [1,1),
and Kukp 1 (g.y = €ss sup, jku(t)ky forp= 1.

The dG Derivative Operator [3]. On a time interval |, de ne the dG time
derivative operator [ @ P™ (Im;H) ! P™ (Im;H) by
Z z
( ImU;V)pdt= (USV)pdt+ (UYL 5V Dn 8V 2P™(Im;H):
In Im

Here, we introduce the right-sided limit of a piecewise continuous funtion U at

For the analysis of the dG time discretization scheme it is important to note
that the operator [ : P (Im;H) ! P™ (Im;H) is an isomorphism, and that,
forany p 2 [1;1 ], there exists a constant 0< Cy 2 independent ofky, and rm,
such that

1 i
k[ ::{1"] 1(U)k|_1 (Im;H) kam pkUkLp“m;H) 8u2 P (|m;H)I

In particular, the operator [ Im] ! is unconditionally stable with respect to the
polynomial degreer .

Application to Nonlinear Initial Value Problems [3]. For T > 0O consider
a nonlinear continuous operator F : (0;T) H ! H. Then, for a given initial
value up 2 H, we consider the nonlinear initial value problem

udt) = F(tu(t); t2[0;TL  u(0) = uo;

for an unknown solutionu : (0;t) ! H.

In order to discretize this problem, we introduce nite dimensional subspaces
Hn H,dim(Hy) < 1 ,oneachtimeintervall,,, m=1;:::;M. Then, using the
dG derivative operator, the m-th time step of the dG time discretization scheme
can be formulated as follows: Given an initial value

Usem 1= UdGj1, 1(tm 1) (with Ugs.o = Uo);
nd Uggji, 2 P™ (Im;Hm) such that

z z
( (U  mUggm 1iVIHAt=  (F(Ugs); V) dt;

In Im
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forany v2 P™ (Im;Hm), where , : H! Hp, signies the H-orthogonal pro-
jection. Then, employing the L2-projection Im : L2(Iy;H) ! P™ (Im;Hm), we
obtain the strong form of the dG method:

m (Ui mUgem 1)= m (F(Uge))  in P™ (Im;Hm):

Thence, introducing the auxiliary variable Zy := uge mUgg,m 1 and de ning
the (continuous) operator T4 : P™m (1, ;Hm) ! P™ (Im; Hm) by

TO@Z)=[ 1Y WEFE@Z+ mUgem 1)

yields the xed point formulation T?,?(Zde) = Zgs. This formulation allows the
application of Brouwer's xed point theorem, which implies that, if the local time
step kK, > 0 is chosen su ciently small (independently of the polynomial de-
greerm), then the hp-dG time stepping method possesses at least one solution
in P™ (Im;Hm); see [3] for a detailed analysis.

Application to Linear Parabolic Problems [2]. Given two separable Hilbert
spacesX ,! H with dense embedding, we consider a linear elliptic operatoA :
X I X Hthat is associated with a bounded, coercive bilinear forma: X X ! R,

a(u;v) = PAu;vixe x 8u;v 2 X:

Here, X “Signi es the dual space ofX , and h; ix> x is the duality pairingin X =
X . Then, we focus on the parabolic evolution problem inX &

udt) + Au(t) = g(t); t2(0;T);  u(0)= uo;

with given data ug 2 H, and g2 L2((0;T); X B!

To discretize the above problem, we introduce conforming discretepacesX m
X, Ym = P™ (Im;Xm), on each time interval | ,,, m = 1;2;:::;M. Then, the
(fully discrete) dG time stepping method can be written as follows: Fa each

m=1;2;:::;M nd Uggj1,, 2 Ym such that

z o Z

n
( mUi  mUggm 1):VIn+ a(Uge; V) dt=  hg;Vixe xdt
In Im
forall V 2 Yy, with 1 X I X being the X -orthogonal projection from X
to Xm, and Uyg o := bp 2 Xm some projection ofug 2 H.
In order to derive a strong formulation of the above dG scheme, werst de ne
the time reconstruction of Uys by
t
ltJdG(t) = UdG,m 1 ¥ . m (Uge) d ; t21m;
m 1
cp., e.g., [5]. Incidentally, there holds LbdG(t) 2 H(0;T;X), and the dier-
ence Byg Ugs(t) can be bound explicitly in terms of the discontinuity jump
of Ugs(t) at tyy 1; see [8]. In addition, to deal with the elliptic part of the discrete
formulation, we de ne the discrete operator A : Xm ! Xm by

V2 Xm: (AmV; )n = Mv; ix> x 8 2 Xm:
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Then, we use anelliptic reconstruction approach [4] to nd 8 such that
U2 VYm: B wix: x =(AnU;WH 8w 2 X:

The dierence 84 Ugg(t) can be bounded by means of a suitable posteriori
error estimate for elliptic problems.
Based on these reconstructions, we infer the strong form of theG method,

0% + ABic= 8, onlpy;

where s the orthogonal projection from X “to X. In a subsequent step,
estimating the di erences between the dG solutionUys and its reconstructions,
L2(0;T;X)- and L (0;T;H)-type a posteriori error estimates can be derived;
see [2] for details.
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The approximation of wavefunctions by anisotropic Gauss fu nctions
Harry Yserentant
(joint work with Stephan Scholz)

The approximation of high-dimensional problems whether they be gien explic-
itly or implicitly as solutions of di erential equations, represents one of the grand
challenges of applied mathematics. This eld made great progress ding the past
years, mainly due to the emergence of modern tensor product mbebds. The as-
tonishing e ciency of such methods for the numerical solution of cetain partial

di erential equations and their obviously often rapid convergencecan meanwhile
be explained theoretically. Adaptive techniques have been developlethat enable
to exploit this convergence behavior in practical computations. Ore of the most
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notorious and complicated problems of this type, the electronic Sciedinger equa-
tion, however largely resists such approaches. The Schredingeaquation forms the
basis of quantum mechanics and is of fundamental importance forw understand-

ing of atoms and molecules. It links chemistry to physics and descrilsea system of
electrons and nuclei that interact by Coulomb attraction and repulsion forces. As
proposed by Born and Oppenheimer in the nascency of quantum méanics, the
slower motion of the nuclei is mostly separated from that of the elettons. This

results in the electronic Schredinger equation, the problem to nd the eigenvalues
and eigenfunctions of the electronic Hamilton operator

XN AT SS Z, X 1
(1) H = i — *t P E—

i=1 iz y=1 X &) i<j X Xl
It acts on functions with arguments x1;:::;Xn in R, which are associated with
the positions of the considered electrons. They;:::;ak in R® are the xed posi-

tions of the nuclei and the valuesZ, > 0 the charges of the nuclei in multiples of
the electron charge. The reason for the comparatively low perfanance of tensor
product methods when applied to the electronic Schmdinger equaion is that such

methods x a set of directions. It is not possible with tensor produd methods to

capture simultaneously and equally well the singularities arising from he interac-
tion of the electrons and the nuclei aligned with the coordinate diretions and the

electron-electron singularities aligned with the diagonals.

Therefore we propose a di erent nonlinear ansatz that is invariantto rotations
of the coordinate system and is inspired by the almost exclusive usefdsauss
functions in quantum chemistry, that is partly motivated by the fac t that the
arising integrals can be evaluated without problems but has also to dawith the
good approximation properties of Gauss functions. We propose t@pproximate
the electronic wavefunctions by linear combinations of anisotropic Guss functions

exp S(x @) Qx a)

The symmetric positive de nite matrices Q are arbitrary and are not xed in
advance. The same holds for the points 2 R3N around which the Gauss functions
are centered and which are only indirectly determined by the positiors of the
nuclei. Basically we show that electronic wavefunctions can be appsomated with
arbitrary order by linear combinations of such Gauss functions.

The key to our approximation Bf the wavefunctions is the extremely accurate
approximation of the functions 1= r and 1=r by exponential functions and with
that indirectly also that of 1 =r by Gauss functions. Approximations of this kind
form a rather universal tool that received much attention during the past years,
due to the work of Braess and Hackbusch and others. Our centtaidea is to
approximate and replace the Coulomb potentials in the operator (1)and the inverse
of the correspondingly shifted Laplace operator, expressed in tens of the Fourier
transform, by series of Gauss functions. The eigenvalue problem isst rewritten
as a linear equation with the convolutionf = K u of the eigenfunctionu under
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consideration with a Gaussian kernelK of su ciently small width as right hand
side. The corresponding approximate equation is then solved via a Nenann series.
The crucial point is that this series is, after reordering and expangn of the right
hand side into a series of Gauss functions, itself a series of Gauss@tions that is
then truncated in an appropriate manner. The main hurdle, to which most of our
work is devoted, is the control of this truncation process.

Our main result is easily sketched. Assume that there exists a sequee of scalar

multiples g;; g2; ::: of Gauss functions such that for every' > 0
. xXo 1/r
i oon n :
= 7

wherer is a given approximation order and the norm anL »-like fractional order
Sobolev norm with a regularity index # a bit greater than one. Expansions of this
type can be constructed using that the Fourier transform of an éectronic wave-
function for an eigenvalue below the ionization threshold is real-analtic and its
partial derivatives of arbitrary order are bounded. The solution of the approxi-
mate equation, that serves as a quasi-exact substitute of the aginal wavefunction,
can then, for arbitrarily small "> 0, be approximated by a linear combination of
2 1/r

n 2

Gauss functions up to anH!-error ", provided the width of the smoothing ker-
nel K is su ciently small in dependence of the approximation order r aimed for.
The approximation of the original, singular wavefunction up to a very small, com-
pletely negligible residual error determined by the approximations ofthe Coulomb
potentials and the inverse of the shifted Laplace operator require therefore only
insigni cantly more e ort than that of its smoothed variant.

Reporter: Philipp Petersen
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