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Abstract. The construction and mathematical analysis of numerical me th-
ods for PDEs is a fundamental area of modern applied mathemat ics. Among
the various techniques that have been proposed in the past, s ome { in par-
ticular, �nite element methods, { have been exceptionally s uccessful in a
range of applications. There are however a number of importa nt challenges
that remain, including the optimal adaptive �nite element a pproximation of
solutions to transport-dominated di�usion problems, the e �cient numerical
approximation of parametrized families of PDEs, and the e�c ient numerical
approximation of high-dimensional partial di�erential eq uations (that arise
from stochastic analysis and statistical physics, for exam ple, in the form of a
backward Kolmogorov equation, which, unlike its formal adj oint, the forward
Kolmogorov equation, is not in divergence form, and therefo re not directly
amenable to �nite element approximation, even when the spat ial dimension
is low). In recent years several original and conceptionall y new ideas have
emerged in order to tackle these open problems.

The goal of this workshop was to discuss and compare a number o f novel
approaches, to study their potential and applicability, an d to formulate the
strategic goals and directions of research in this �eld for t he next �ve years.

Mathematics Subject Classi�cation (2010): 35C20, 41A25, 41A65, 42C40, 65N12, 65T60, 65F20.
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Introduction by the Organisers

The workshop New Discretization Methods for the Numerical Approximation of
PDEs was organized by Stephan Dahlke (Marburg), Gitta Kutyniok (Berlin ), En-
dre S•uli (Oxford), and Rob Stevenson (Amsterdam). This meeting was attended
by 51 participants from 11 countries.

Numerical approximation of PDEs is one of the central areas of computational
mathematics, stimulated by the multitude of applications of PDEs in mathemat-
ical models in the sciences, engineering and economics. There is a richarsenal
of numerical techniques for PDEs, including �nite di�erence methods, �nite ele-
ment methods, �nite volume methods, spectral methods, and wavelet methods,
to name just a few. The �nite element method (FEM), in particular, h as been
successfully applied to linear and nonlinear PDEs in, typically, conservative form,
that arise in continuum mechanics, such as the fundamental partial di�erential
equations of solid and 
uid mechanics. Some of the noteworthy features of �-
nite element methods include their applicability to a wide class of problems, their
convenience in terms of the use of locally re�ned computational grids and local
variation of the polynomial degree in the �nite element space (as inh-version and
(h; p)-version adaptive FEMs), and their 
exibility in representing compu tational
domains possessing complicated geometries. By now, powerful software packages
based on �nite element methods have been developed and it is fair to say that the
theory of FEMs is an established and mature �eld of numerical analysis. While
it is expected that the range of applications of FEMs will continue to grow (a
recent active area being, for example, the development and mathematical analysis
of FEMs for geometric PDEs and PDEs on manifolds), it seems unclearwhether
ground-breaking new theoretical contributions are likely to emerge in the subject.

Contemplating scienti�c challenges that have arisen in recent years, it is pos-
sible to identify problem classes for which the performance of existing numerical
techniques (and �nite element methods in particular) is not entirely satisfactory.
These include PDEs whose solutions develop singularities along lower-dimensional
manifolds (e.g. blow-up phenomena in combustion problems and in kinetic models
of chemotaxis (Keller{Segel system)), nonlinear hyperbolic conservation laws, for
which smooth initial data can evolve into solutions that contain discontinuities
(shocks and contact discontinuities), and transport-dominateddi�usion equations
whose solutions exhibit thin internal and boundary layers. One of the key open
questions is in particular whether an adaptive �nite element approximation of an
elliptic or parabolic transport-dominated di�usion equation realizes t he conver-
gence rate that could be obtained with the best possible partition from the class
of all partitions generated by, say, the newest vertex bisection technique; as a mat-
ter of fact, the convergence rate that could be obtained even with the best possible
partition is unlikely to be \optimal" for such equations because of the loss of regu-
larity of the analytical solution (in the scale of Besov spaces relevant for isotropic
approximations) in the limit of the P�eclet number tending to + 1 . Consequently,
\anisotropic re�nement" techniques will be needed in order to achieve the rate
that is \optimal" for a given polynomial degree used in the �nite element space.
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Recently, several original and conceptionally novel ideas have been proposed
whose potentials and scope of applicability are still being investigated. Among
those are (adaptive) numerical schemes based on anisotropic ansatz functions,
mixed dictionaries/frames or tensor wavelets. Other exemplary classes are low-
rank tensor techniques for high-dimensional PDEs, schemes based on compressed
sensing, meshless methods, and reduced-basis methods. The mainfocus of this
workshop was to investigate the potentials of these newly developed discretization
schemes and to identify and manifest promising future research directions in the
�eld.

The workshop featured 36 talks, thereof 11 longer overview talks. Some high-
lights of the presentations include:

� Reduced basis methods: Wolfgang Dahmen reported on a double greedy
algorithm for solving radiative transfer problems. To reduce the dimension
of the problem, the angular variables are treated as parameters,and the
solution manifold is approximated by the reduced basis method. The ex-
pansion coe�cients in this basis are determined by solving stable Petrov-
Galerkin problems in the reduced space. The test spaces are generated
through an interior greedy loop.

� Low rank tensors: Reinhold Schneider gave an overview of low rank
tensor techniques for the numerical solution of high dimensional PDEs.
The recently introduced Hierarchical Tucker tensor formats and Tensor
Trains o�er stable and robust approximations at low cost. Approxim ations
in those formats can be found by applying matrix low rank factorisation
techniques (SVD).

� Entropy-stable �nite di�erence schemes: Eitan Tadmor's lecture fo-
cussed on the importance of entropy stability in the dynamics of nonlinear
systems of conservation laws and related convection-di�usion equations.
He presented a general theory of entropy stability for di�erenceapproxi-
mations of such nonlinear partial di�erential equations, and illustra ted the
general theory through a range of �rst- and second-order accurate �nite
di�erence schemes for a variety of scalar problems as well as entropy stable
schemes for the Euler and Navier{Stokes equations. Recent computations
of entropy-measure-valued solutions based on a class of arbitrarily high
order accurate and entropy stable TeCNO schemes were also shown.

� Ridgelet and shearlet based discretisations for transport prob-
lems and wave propagation: Philipp Grohs presented a ridgelet-based
discretization of the kinetic transport equation.Using either a sparse collo-
cation approach in the transport direction, or a tensor product construc-
tion, the system was solved in optimal complexity, even in the presence of
line singularities in the solution.

The numerical solution of inverse scattering problems was discussed by
Philipp Petersen. In the two-dimensional case, scatterers can bemodeled
by curves. These curves have optimally sparse representations inshearlet
systems. This suggests to solving the inverse problem with a sparsity
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promoting Tikhonov regularization term. The approach generalizesto
certain linearized inverse problems.

The organizers would like to take the opportunity to thank MFO for p roviding
support and a very inspiring environment for the workshop. The magic of the place
(as coined by one of the participants) and the pleasant atmosphere contributed
greatly to the success of the workshop.

Acknowledgement:The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, \US Junior Oberwolfach Fellows".
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Abstracts

Reduced basis techniques for multiscale methods
Assyr Abdulle

In this report, we consider reduced basis numerical homogenization methods for
the numerical solution of multiscale partial di�erential equations (PDEs) in a do-
main 
 2 Rd, 1 � d � 3. We will consider two classes of multiscale PDEs. First
we consider quasilinear problems: �nduε 2 H 1

0 (
) such that

(1)
Z



aε(x; uε)r uε � r wdx =

Z



fwdx 8 w 2 H 1

0 (
) ;

where f 2 L 2(
), aǫ(x; u) is a d � d tensor of Carath�eodory type, uniformly
elliptic and bounded. Second, we consider Stokes problems in porousmedia: �nd
(v ε; pǫ) 2 (H 1

0 (
 ǫ))d � L 2(
 ǫ)=R such that

a(v ǫ; w) + b(w; pǫ) =
Z



f � wdx 8w 2 (H 1

0 (
 ǫ))d;(2)

b(v ǫ; q) = 0 8q 2 L 2(
 ǫ)=R;

where f 2 (L 2(
)) d; a(v ; w) =
R


 �
r v : r wdx; b(v ; q) = �

R

 �

q(r � v )dx. The
multiscale nature of the above PDEs has di�erent sources. For thequasilinear
problems, the tensoraε(x; uε) oscillates over a small length scale� . For the Stokes
problems, the presence of pore structures (solid parts) of size� makes the 
uid
domain 
 ǫ highly heterogeneous. Precisely 
ǫ = 
 n

S
x2 (1/2+ Z)d � (x + ' (YS ; �x )),

where YS is a reference solid domain� �Y with Y = ( � 1=2; 1=2)d and ' (�; x) :
Y ! Y is a homeomorphism such that' (�; x)j∂Y is an identity for every x 2 
.
Homogenization. For both problems described above, a direct application of a
�nite element method (FEM) is computationally prohibitive as such a me thod
needs a mesh sizeh < � to converge. However, in many applications one is
interested in the macroscale behavior of the solution. Such e�ective equations
have been derived for the considered problems. They involve a macroscale partial
di�erential operator. Under suitable assumptions on the data of the problem, it
is possible to show that the family of micro solutions converge (usuallyin a weak
sense, up to a subsequence extraction) towards the solution of the macroscale
problem. For (1) the homogenized problem reads [11] : �ndu 2 H 1

0 (
) such that
Z



a(x; u)r u � r wdx =

Z



fwdx; 8 w 2 H 1

0 (
) :(3)

The e�ective equation is of the same type as the microscopic equation, but the
oscillating tensor has been replaced by an averaged� independent tensor. For (2)
the homogenized problem reads [15, 10]: �ndp 2 H 1(
) =R such that

Z



a(x)r p � r qdx =

Z



a(x)f � r qdx; 8 q 2 H 1(
) =R;(4)
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where a(x) is a d � d conductivity tensor. The e�ective problem is of Darcy type,
the domain does not contain \pore scales" anymore (it has been \homogenized").
For both problems, under suitable assumptions on the oscillatory data (respec-
tively the pore structure), the e�ective conductivity tensor is re covered at a given
point x 2 
 by solving \micro problems" (PDEs involving the original multiscale
problem in a unit reference domain wherex enters as a parameter).
A brief description of a numerical homogenization method. Given the
problems (1) or (2), the goal is to �nd a numerical approximation of (3) or (4)
involving a priori unknown homogenized coe�cients (a(x; u); or a(x) for our prob-
lems). We describe the �nite element heterogeneous multiscale method (FE-HMM)
[3, 1, 13] (see [4, 7] for an analysis of problems (1),(2)). It relies on

1. A macroscopic FE solver for the e�ective (homogenized) problemwith a
priori unknown data f ah(xK,j ; u(xK,j))gJ

j=1 (quasilinear problem), f ah(xK,j )gJ
j=1

(Stokes problem), de�ned on quadrature pointsxK,j on each macro elementK of
a macroscopic partition TH of 
;

2. A microscopic FE solver for \micro" problems based on the di�erential
operators (1) or (2) with right-hand side involving the unit vectors f e1; : : : ; edg in
Rd on sampling domainsK δj = xK,j + � (� 1=2; 1=2)d; � � � ; the outcome of this
step ared FE solutions � i

xK;j
; i = 1 ; : : : ; d for each quadrature point xK,j of each

element K 2 TH (for the Stokes micro problems each micro function is a couple
of velocity-pressure solutions).

3. A data recovery process in which the e�ective dataah(xK,j ; u(xK,j)), respec-
tively ah(xK,j ), at the point xK,j are computed using a suitable average involving
the �ne scale functions � i

xK;j
; i = 1 ; : : : ; d in eachK δj (for the Stokes problem only

the micro velocity (vector) solution enter in the computation of ah(xK,j )).
Reduced basis techniques for numerical homogenization . The main com-
putational cost of the FE-HMM comes from the repeated solutionsof micro prob-
lems around macro quadrature points. One can thus ask if the macroscopic de-
pendence of the micro solutions could be \interpolated" in an appropriate way
and if a reduced number of micro solutions could be precomputed andused to
compute the e�ective data at the required quadrature nodes of the macro solver.
This question has been addressed for numerical homogenization in the framework
of the reduced basis (RB) method [12, 2, 5].

Observe that the e�ective data computed in the FE-HMM are parameter depen-
dent. For Problem (1) the e�ective data depend on x 2 
 ; on the force �eld of the
micro problems which involves any of the unit vector f e1; : : : ; edg in Rd and the
value of the unknown (numerically) homogenized solution itself (cheap upper and
lower bounds [ulow; uup] are available for this solution). For Problem (4) the e�ec-
tive data depend on a set of geometrical parameters (� 1(x); : : : ; � p(x)) 2 D � Rd

and on the force �eld of the micro problem f e1; : : : ; edg in Rd.
A greedy algorithm allows to select (thanks to suitable a posteriori error esti-

mators) among this parameter space anN � dimensional set of the parameters for
which the corresponding micro functions di�er most (measured in a Hilbert norm



New Discretization Methods for the Numerical Approximation of PDEs 97

corresponding to the PDE). For many problemsN turns out to be small. The cor-
responding N � dimensional set of micro functions accurately computed span the
reduced basis space. A separation between microscopic variables and parameters
variables (either in the tensor for (1) or in the geometry for (4)), called an a�ne
representation is crucial for the e�ciency of the Greedy procedure (appropriate
interpolation procedures [14] can be applied if this requirement is notsatis�ed). In
an online stage, the precomputed basis (set once for all) is used at the macroscopic
quadrature point to compute the actual value of the e�ective data. Thanks to the
a�ne representation this amounts to solve (small) N � N linear system (essentially
pre-assembled in the o�ine stage).

A priori error estimates in terms of macro, micro, modeling and reduced basis
errors have been derived for the RB-FE-HMM applied to Problems (1) in [6]. An
adaptive FE-HMM method for Problem (2) has been analyzed in [7] andreduced
basis approximations have been presented in [8, 9].
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Kolmogorov widths and low-rank approximations of parametr ic
elliptic PDEs

Markus Bachmayr
(joint work with Albert Cohen)

We consider parametric di�usion equations

� divx
�
a(x; y)r u(x; y)

�
= f (x) ; x 2 D � Rm; y 2 U := [ � 1; 1]d;

with m; d 2 N, where the coe�cient a has the form a(x; y) = �a(x) �
P d

i=1 yi i(x)
and is assumed to satisfy a uniform ellipticity assumption, that is, there exist
0 < r � R such that 0 < r � a(x; y) � R < 1 for x 2 D and y 2 U. The weak
form of this problem on V := H 1

0 (D ) reads

�
�A �

dX

i=1

yiAi

�
u(y) = f ;

where f 2 V 0 and �A; A i : V ! V 0, i = 1 ; : : : ; d, are de�ned by

h�Au; v i :=
Z

D
�ar u � r v dx ; hAiu; vi :=

Z

D
 ir u � r v dx ; u; v 2 V :

Our aim is to study the performance of low-rank approximations of u of the
form

(1)
nX

k=1

vk(x) � k(y) ;

where the vk and � k can be chosen arbitrarily to minimize the error for eachn.
Approximations of the type (1) are used implicitly in reduced basis or POD

methods and constructed explicitly in methods based on more general tensor de-
compositions. In all of these approaches, it is of crucial importance that the
required number of termsn does not increase too rapidly with a decreasing error
tolerance in approximating u. In the reduced basis context, where one is generally
interested in uniform error estimates, the relevant measure for assessing the speed
of convergence of (1) towardsu is the Kolmogorov n-width of u(U) � V , which is
de�ned for n 2 N by

dn
�
u(U)

�
V := inf

dim( W )= n
sup
y2 U

min
w2 W

ku(y) � wkV ;

where we consideru as a mapy 7! u(y) from U to V . The rank of a v 2 L 2(U; V)
is de�ned as the rank of the induced Hilbert-Schmidt operator ' 7!

R
U v(y) ' (y) dy

from L 2(U) to V .
First upper bounds for the n-widths can be obtained from polynomial expan-

sions [1, 2], where the functions� k are selected from a given basis of tensor prod-
uct polynomials. However, if the problem has additional structure,one can obtain
stronger decay ofn-widths when allowing arbitrary � k.
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We consider in particular the case of coe�cients that are piecewise constant on
some �xed partition f D1; : : : ; Ddg of D , that is,

(2) �a := 1 ;  i := � � Di ;

for a �xed � 2 (0; 1). A simple example of improved bounds under this struc-
tural assumption is the one-dimensional caseD = (0 ; 1) with a partition into d
subintervals, where one easily �nds that rank(u) � 2d � 1.

Our further considerations are based on a Neumann series expansion of u with
the partial sums

(3) uk(y) :=
kX

ℓ=0

� dX

i=1

yi( �A � 1Ai)
� ℓ

�A � 1f ;

which satisfy ku � ukk � C� k. Expanding and grouping terms corresponding to
the same multinomials one �nds that the uk are in fact partial sums up to �xed
total degrees of the Taylor expansion ofu [2], and counting terms one obtains the
generic estimate

dn
�
u(U)

�
V � Ce� c n1=d

for the n-widths, which is a consequence of the analyticity ofu with respect to y.
This estimate can be improved under a further assumption that is in particular
implied by (2).

Proposition 1. If
P d

i=1 Ai = � �A, then for each k, there exist vℓ 2 V and d-
variate polynomials � k,ℓ, ` = 1 ; : : : ; n(k) :=

� k+ d� 1
d� 1

�
, such that for uk as in (3) we

have uk(y) =
P n(k)

ℓ=1 � k,ℓ(y) vℓ, and consequently,dn
�
u(U)

�
V � Ce� c n1= ( d � 1)

.

Under a fairly general additional condition, we thus only obtain a reduction
in the n-widths that weakens for larged. However, substantially stronger results
can be obtained under more specialized further assumptions. To this end, we �rst
describe a reduction to a problem on the skeleton � :=

S d
i=1 @Di n @Dof the

partition, where we de�ne V� as the space of trace values on � of functions in
V = H 1

0 (D ).
Denoting by E the harmonic extension operator fromV� to V , we de�ne the

Steklov-Poincar�e operators Si : V� ! V 0
� , i = 1 ; : : : ; d, and �S: V� ! V 0

� , as well as
the projected right hand side f̂ , by

hSiv� ; w� i :=
Z

Di

r Ev � � r Ew � dx ; �S :=
dX

i=1

Si ; hf̂ ; v � i :=
Z

D
f Ev � dx ;

for v� ; w� 2 V� . We obtain a Neumann series representation on � with partial
sums

uk,� (y) :=
kX

ℓ=0

� dX

i=1

yi (� �S� 1Si)
� ℓ

�S� 1 f̂ ;

which converge inL 1 (U; V� ) to the projection of u onto EV� . Since the component
of u in the complement of EV� in V is of rank at most d, one has rank(uk) �
rank(uk,� ) + d, and thus the problem is reduced to estimating rank(uk,� ).
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We consider this in detail in the case ofD = ( � 1
2 ; 1

2 )2 and d = 4 with the
two-by-two checkerboard partition

(4) D1 =
�
� 1

2 ; 0
� 2

; D2 =
�
0; 1

2

�
�

�
� 1

2 ; 0
�
; D3 =

�
� 1

2 ; 0
�

�
�
0; 1

2

�
; D4 =

�
0; 1

2

� 2
;

where we set �1 = [ � 1
2 ; 1

2 ] � f 0g, � 2 = f 0g � [� 1
2 ; 1

2 ], such that � = � 1 [ � 2. We
rewrite uk,� in terms of the operators

G0 := � �S� 1 �S = � id ; G1 := � �S� 1(S1 � S2 � S3 + S4) ;

G2 := � �S� 1(S1 + S2 � S3 � S4) ; G3 := � �S� 1(S1 � S2 + S3 � S4) ;

which gives, with zi(y) that are linear combinations of y1; : : : ; y4,

uk,� (y) =
kX

ℓ=0

� d� 1X

i=0

zi(y) Gi

� ℓ
�S� 1 f̂ :

Introducing the orthogonal decomposition of V� into V̂1 := f v : vj � 1 , vj � 2 eveng,
V̂2 := f v : vj � 1 odd, vj � 2 = 0 g, V̂3 := f v : vj � 1 = 0, vj � 2 oddg, we obtain

G1V̂1 = G2V̂2 = G3V̂3 = f 0g � V� ;

G2V̂1; G1V̂2 � V̂3 ; G3V̂1; G1V̂3 � V̂2 ; G3V̂2; G2V̂3 � V̂1 ;

G2G3v2 = G1v2 ; G2
3v2 = v2 ; v2 2 V̂2 ; G3G2v3 = G1v3 ; G2

2v3 = v3 ; v3 2 V̂3 :

Combining these properties, we arrive at the following result.

Theorem 2. Let D be as in (4) with d = 4 . Then for each k 2 N, and for n(k) :=
8k + 5 , there exist v1; : : : ; vn(k) 2 V and d-variate polynomials � 1; : : : ; � n(k) , each
of total degreek, such that

sup
y2 U






 u(y) �

n(k)X

ℓ=1

� ℓ(y) vℓ








V
�

k �A � 1f kV

1 � �
� k+1 ;

and consequentlydn
�
u(U)

�
V � C exp(� j ln θj

8 n).

This explains the numerical observation of exponential convergence in this case.
Numerical tests also reveal, however, that this e�ect is strongly tied to the problem
geometry and is lost for less regular subdivisions of the unit square into quadri-
laterals, where one only observes subexponential decay of then-widths.

This research was supported by ERC AdG BREAD.
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Numerical approximation of total-variation regularized p roblems
Sören Bartels

The numerical treatment of minimization problems de�ned on functions of
bounded variations leads to several di�culties. First, solutions do not exhibit
higher regularity properties and typically jump across lower dimensional subsets.
Second, the problems are non-linear and non-di�erentiable, so that the practical
iterative solution has to be done appropriately. We discuss a priori and a posteriori
error estimates and their practical performance in the context of adaptive mesh
re�nement. The iterative solution is done by a primal-dual method, for which
modi�cations are addressed that allow for larger time steps under appropriate
conditions. Particular attention is paid to the the optimality of conve rgence rates
and restrictions on step sizes.

As a reference model, we consider the Osher{Rudin{Fatemi energy functional,
see [7], de�ned foru 2 BV (
) \ L 2(
) by

I (u) = jDu j(
) +
�
2

ku � gk2
L2 (
) :

Here, g 2 L 1 (
) is a given noisy image, and � > 0 a suitably chosen parameter,
so that the minimizer u serves as a regularization ofg. By noting that

jDu j(
) = sup
n Z



(� u) div p dx : p 2 HN (div ; 
) ; jpj � 1

o
;

the minimization problem can be written as a saddle point problem, i.e.,

inf
u

sup
p

Z



(� u) div p dx +

�
2

ku � gk2
L2 (
) � I K1 (0) (p):

The indicator functional I K1 (0) enforces the constraint jpj � 1 on vector �elds
p 2 HN (div ; 
). Duality arguments allow us to exchange the order of the in� mum
and supremum without modifying the value of corresponding saddle points. In
particular, we may then eliminate the variable u via the optimality relation div p =
� (u� g). This de�nes the dual problem, that consists in maximizing the functional

D (p) =
� 1
2�

kdiv p + �g k2
L2 (
) +

�
2

kgk2
L2 (
) � I K1 (0) (p)

in the set of all p 2 HN (div ; 
). For admissible functions v and vector �elds q we
have that I (v) � D (q) and equality for the corresponding solutions.

Following [6, 2] the approximation error u � uh of a conforming numerical
method can be bounded via

�
2

ku � uhk2
L2 (
) � I (uh) � I (u) � I (uh) � D (q);

for an arbitrary vector �eld q 2 HN (div ; 
). For practical error estimation and
mesh-re�nement, a good choice ofq is obtained by an appropriate post-processing
of u, noting that formally we have p = r u=jr uj, or by a numerical solution of the
dual problem. An appropriate choice of a subspaceQh � HN (div ; 
) is needed to
e�ciently solve the non-di�erentiable dual problem.
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The iterative procedure to solve the primal problem follows [5, 1, 4], and realizes
a primal-dual iteration via solving the equations

euk+1
h = uk

h + �d tuk
h;

� (dtpk+1
h + r euk+1

h ; qh � pk+1
h )a � 0;

(dtuk+1
h ; vh)b + ( pk+1

h ; r vh)L2 (
) = � � (uk+1
h � g; vh)L2 (
) ;

repeatedly until a stopping criterion is satis�ed. Here, dtak+1 = ( ak+1 � ak)=�
with a step-size� > 0 is the backward di�erence quotient. The choice of the scalar
products is crucial to obtain e�cient iterations. If ( �; �)a is a discrete version of
the L 2 inner product, then the equation for dtpk+1

h can be solved directly. The
choice of the L 2 inner product for the equation that de�nes dtuk+1

h leads to the
step size condition� � ch. This can be improved to the condition � � ch1/2 if a
discrete version of theH 1/2 norm is used. The choice is justi�ed by the observation
that solutions belong to BV (
) \ L 1 (
) and hence algebraically to H 1/2(
). For
details, see [3].
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Multilevel Preconditioning of Discontinuous-Galerkin Sp ectral
Element Methods

Kolja Brix
(joint work with Martin Campos Pinto, Claudio Canuto, and Wolfgang D ahmen)

We consider preconditioning techniques for Discontinuous Galerkin (DG) dis-
cretizations of elliptic boundary value problems [1]. Since the important e�ects
already arise in a simple model problem, we focus on Poisson's equation. We
choose the symmetric interior penalty Galerkin method (SIPG), because symme-
try is preserved in the discretization process and the method is dual consistent.

While in previous studies preconditioners for low-order methods have been ad-
dressed [2, 3], our goal is now to exploit the full discretization powerof DG methods
using locally re�ned meshes and in particular varying polynomial degrees. For pre-
conditioners currently available the condition number grows logarithmically with
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the polynomial degree as long as it is kept the same throughout the mesh and
it grows quadratically for spatially varying polynomial degrees. Our aim is to
construct a preconditioner, which under mild grading conditions on the distribu-
tion of the mesh sizes and of the polynomial degrees leads to uniformly bounded
condition numbers for arbitrarily large and spatially varying polynomia l degrees.
Moreover, we require the complexity of each iteration to remain proportional to
the number of degrees of freedom. In this presentation we focuson the dependence
of the condition number on the polynomial degrees and only considerthe case of
geometrically conforming meshes [5].

A key ingredient for preconditioning high-order methods is to use the nodal
spectral element method on Legendre{Gauss{Lobatto (LGL) grids. The LGL grid
GN � [� 1; 1] � R of order N 2 N consists of the two boundary points � 1 and
N � 1 inner points, which are the zeros of the �rst derivative of the Legendre
polynomial L N . These grids do not only provide high-order quadrature rules at
low cost in combination with appropriate weights, but give also rise to important
norm equivalences, see e.g. [10, 7, 15]. In particular, for the LGL grid GN of order
N for any polynomial p on [� 1; 1] of degree at mostN and its piecewise a�ne
interpolant I GN p at the points of the LGL grid GN , one has

kpkL2 ( � 1,1) h kI GN pkL2 ( � 1,1) and jpjH1 ( � 1,1) h jI GN pjH1 ( � 1,1) ;

where the constants are independent of the polynomial degreeN .
Our main tool for the construction of preconditioners is the auxiliary space

method (ASM). Many researchers can claim credit for this technique, see e.g. [14,
16], and it can be seen as an application of Nepomnyaschikh's �ctitiousspace
lemma [13]. In the framework of the ASM, we set up an auxiliary problemthat is
closely related to the original one, but easier to solve. The closeness of the original
and the auxiliary problem is expressed by the ASM-conditions [14, 5], which are
direct and inverse estimates that involve the bilinear forms arising in the weak
formulations of the original and the auxiliary problem, a smoothing operator,
and two linear transfer operators that couple the linear spaces underlying both
problems. The central ASM result [14] then identi�es a symmetric preconditioner
such that the spectral condition number of the resulting preconditioned system is
up to a constant bounded by the quotient of the largest and smallest eigenvalue of
the preconditioned auxiliary problem and the preconditioned smoothing operator.

We construct a multi-stage preconditioner [4, 5] by using three consecutive
realizations of the ASM. Formally this concatenation of ASM preconditioners can
be interpreted as a single preconditioner with three smoothers. Wewould like to
emphasize that in particular the �rst and the third application of the ASM are
also of interest as standalone components for new preconditioners, see e.g. [8].

In a �rst application of the ASM, the spectral DG method is precond itioned by
a spectral conforming Galerkin method on the same grid. The smoothing operator
is obtained from an inverse estimate and its matrix representation isdiagonal.

Since LGL grids for di�erent degrees do not match at element interfaces, one
cannot use direct low-order �nite elements on LGL grids as conforming auxiliary
spaces. Therefore, for the second application of the ASM the problem is transferred



104 Oberwolfach Report 2/2015

from a spectral conforming method to a problem on a space that in each element
is given by a tensor product of piecewise linear �nite elements on a dyadic subgrid.
These dyadic grids, which mimic LGL grids, are constructed [6] such that they are
locally quasi-uniform, the grids are locally of a mesh size that is comparable with
that of the corresponding LGL grid, and the family of grids is nestedat the same
time. Due to the anisotropy of the dyadic grids, in order to derive anappropriate
smoothing operator an inverse estimate can only be applied in selected parts of
the domain. Nevertheless, the matrix representation of the smoothing operator
is very sparse and its inverse can be e�ciently approximated using a substruc-
turing approach with patchwise block-elimination and �nitely many Gau ss{Seidel
relaxations on the skeleton. Suitable coupling operators for the case of varying
polynomial degrees can be obtained using element shape functions and polynomial
and piecewise linear interpolation [4, 5].

The third application of the ASM exploits the hierarchical structure inherent to
dyadic grids in order to build a multilevel preconditioner based on a composite mul-
tiwavelet approach. From [12] we know that in an anisotropic situation a H 1-stable
splitting on a single element is obtained by tensorization, when orthogonality of
di�erence spaces is ensured. Therefore, we use piecewise linear orthogonal multi-
wavelets [11], which are constructed in such a way that the �nite element space on
a dyadic grid can be embedded into a locally re�ned wavelet space of comparable
dimension. Since the multiwavelets are prepared to be restricted tothe interval
[0; 1], we obtain a Riesz basis forL 2([0; 1]d) and by scaling also for H 1([0; 1]d)
and H 1

0 ([0; 1]d). Now our idea is to construct a global auxiliary multilevel space
with a H 1-stable multilevel decomposition [5]. Following [9], we continuously glue
anisotropic wavelet bases in 2D or 3D obtained by tensorization on each element
into a global composite basis, such thatH 1-stability is preserved. Then we can
apply a diagonal wavelet preconditioner and nested iteration techniques to ensure
an e�cient solution of the auxiliary problem in linear complexity.

Various numerical experiments quantify the theoretical �ndings [5].
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Regularity of Stochastic Partial Di�erential Equations in Besov Spaces
Related to Adaptive Schemes

Petru A. Cioica
(joint work with S. Dahlke, K.-H. Kim, S. Kinzel, K. Lee, F. Lindner, T. Raasch,

K. Ritter, and R.L. Schilling)

We present a result concerning the regularity of the solution to second order sto-
chastic partial di�erential equations (SPDEs, for short) of the f orm

(� )

8
>>>>>>><

>>>>>>>:

du =
� dX

i,j=1

aijuxi xj + f
�

dt +
1X

k=1

� dX

i=1

� ikuxi + gk
�

dwk
t

on 
 � [0; T ] � O ;

u = 0 on 
 � (0; T ] � @O;

u(0) = u0 on 
 � O ;

whereO � Rd is an arbitrary bounded Lipschitz domain. The equations are driven
by a sequencef (wk

t )t2 [0,T ] : k 2 Ng of real-valued standard Brownian motions
w.r.t. a normal �ltration ( F t)t2 [0,T ] on a complete probability space (
 ; F ; P). We
use the special scales

(?) B α
τ,τ (O);

1
�

=
�
d

+
1
p

; � > 0;

of Besov spaces to measure the smoothness w.r.t. the space variable (p � 2 �xed).
This analysis is motivated by some fundamental problems arising in thecontext
of the numerical treatment of Eq. (� ). By now, the numerical methods for SPDEs
discussed in the predominant part of the literature rely on uniform re�nements
w.r.t. the space variablex 2 O . This seems to be suboptimal: It is well-understood
that, in general, the convergence rate of classical uniform methods depends on the
Sobolev regularity of the target function. Simultaneously, in common settings,
the solution to Eq. (� ) has only poor spatial Sobolev regularity, see, e.g., [6, 7].
Consequently, we cannot expect high convergence rates by re�ning uniformly in
space. Therefore, it would be tempting to useadaptive schemes in order to increase
e�ciency. It is well-known that the approximation order that can be achieved by
adaptive and other non-linear approximation schemes depends in many cases on
the regularity of the target function in the scale (?), where p indicates the L p-norm
in which the error is measured. In particular, this relationship holds for adaptive
schemes based on wavelets. Thus, in order to clarify whether spatial adaptivity
really pays for SPDEs, �rst of all, the regularity of the solution has t o be analysed,
using the scale (?) to measure the smoothness w.r.t. the space variable. The scales
(?) are commonly known as (L p-)adaptivity scales.

Main Results. Our analysis is embedded into the framework of the analytic
approach to SPDEs initiated by N.V. Krylov. In particular, we borrow (and
extend) the L p-theory developed in [5] for second order linear SPDEs on general
bounded Lipschitz domains. Therein, certain weighted Soblev spaces H γ

p,θ(O) are
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used to measure the regularity of the equation w.r.t. the space variable. For
integer 
 2 N0 and � 2 R, they consist of all measurable functions having �nite
norm

kukH 

p;� (O ) :=

 
X

jαj� γ

Z

O

�
� � (x) jαj D αu(x)

�
�p

� (x)θ� d dx

! 1/p

;

where � (x) denotes the distance of a pointx to the boundary of the domain.
For fractional and negative smoothness parameters
 , they can be obtained by
complex interpolation and duality. In order to give a rigorous meaning to Eq. (� ),
one also needs analogous spacesH γ

p,θ(O; `2) for `2-valued functions; we refer, e.g.,
to [5] for details. The main result of [5] applied to Eq. (� ) in a simpli�ed setting
reads as follows: Assume that the coe�cientsaij and � ik are constant and ful�ll
the stochastic parabolicity condition

(P) � 0j� j2 �
dX

i,j=1

�
aij �

1
2

h� i� ; � j� i ℓ2

�
� i� j � K j� j2; � 2 Rd;

for some constants� 0; K 2 (0; 1 ). Then, for p � 2 and 
 2 R, if

(1) f 2 L p(
 � [0; T ]; H γ� 2
p,d+2 p� 2(O)) and g 2 L p(
 � [0; T ]; H γ� 1

p,d+ p� 2(O; `2)) ;

then Eq. (� ) with vanishing initial condition u0 � 0 has a unique solution

u 2 L p(
 � [0; T ]; H γ
p,d� 2(O)) :

From this result, we extract information about the spatial Besov regularity of
the solution in the adaptivity scale by proving the following central embedding.
It shows that|up to a certain extent|the analysis of the Besov re gularity in
the adaptivity scale can be traced back to the analysis of the weighted Sobolev
regularity. It is worth mentioning that this embedding is not necessarily connected
to the SPDE setting. A proof can be found in [1, theorem 4.7] or alternatively in
[4, theorem 6.9].

Theorem 1.1. Let O � Rd be a bounded Lipschitz domain. Forp � 2, 
; � > 0,
we have

H γ
p,d� νp(O) ,! B α

τ,τ (O);
1
�

=
�
d

+
1
p

; for all 0 < � < min
n


; �
d

d � 1

o
:

Using this embedding, we obtain our main result on the spatial Besov regularity
of SPDEs in the adaptivity scales (?). For Eq. ( � ), it reads as follows. The result
in its full generality has been proven in [1, 2, 4].

Theorem 1.2. Let p � 2 and 
 2 R. Assume the simpli�ed setting from above.
Then, if f and g = ( gk) ful�ll (1) and u0 � 0, the unique solutionu to (� ) ful�lls:

u 2 L p(
 � [0; T ]; B α
τ,τ (O)) ;

1
�

=
�
d

+
1
p

; for all 0 < � < min
n


;
2
p

d
d � 1

o
:

Let us illustrate the relevance of our result for the question whether adaptivity
pays in the SPDE context, by considering a prime example.
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Example 1. Let O � R2 be a bounded two-dimensional polygonal domain. As-
sume that (aij ) = ( � ij), where (� ij) denotes the Kronecker delta, and� ik � 0,
i.e., consider the stochastic heat equation with additive noise. Iff and g ful�ll (1)
with 
 = 2 and p = 2, then the unique solution u to Eq. (� ) with u0 � 0 ful�lls

u 2 L 2(
 � [0; T ]; B α
τ,τ (O)) ;

1
�

=
�
2

+
1
2

; for all 0 < � < 2:

Simultaneously, the analysis in [7] shows that, under similar assumptions, the
spatial Sobolev regularity of the solution to Eq. (� ) is strictly less than 2, if the
underlying domain is non-convex. This is a clear theoretical justi�cation for start-
ing to design spatially adaptive wavelet schemes for SPDEs.

Note that, in contrast to the deterministic setting, when considering stochastic
PDEs we observe the paradigm that the Besov regularity in the scale(?) exceeds
the spatial Sobolev regularity of the solution also in the case of smooth domains,
see, e.g., [3, Example 5.2].

Further results obtained so far, in particular, concerning the H•older regularity
of the paths of the solution, considered as a stochastic process taking values in
the Besov spaces from the adaptivity scales (?), can be found in [1, 4]. Therein,
we also extend theL p-theory from [5] to an L q(L p)-theory for the stochastic heat
equation, allowing the integrability parameters q and p w.r.t. the time and space
variable, respectively, to di�er. This is done by a combination of techniques from
the analytic approach with results from the semigroup approach toSPDEs.
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Greedy approximation and radiative transfer
Wolfgang Dahmen

(joint work with Christian Plesken)

The numerical treatment of kinetic models such as radiative or neutron transfer
(see e.g. [7]) pose signi�cant challenges because the underlying operator equation
involves a global scattering term and the solution is a function of thevelocity or
angular variables, ranging (in the present context) over a compact set V, and the
spatial (and/or temporal) variables in a bounded domain D (as well as possibly
further parameters). Thus, one confronts the curse of dimensionality when em-
ploying standard discretizations such as �nite di�erences or �nite elements. In
fact, for a total number of variables p, which even in the stationary case ofd = 3
spatial variables and two directional parameters amounts top = 5, the size of
such standard discretizations with meshsizeh would scale likeh� p where, due to
the scattering term, the system matrices are fully populated. Numerous strate-
gies have been developed to deal with these obstructions such as the method of
moments, employing spectral expansions in the angular variables, or the discrete
ordinate method in combination with �xed point iterations, see e.g. [6] and the
references cited there.

We now sketch a rather di�erent strategy proposed in [4] and highlight the
principal underlying conceptual guidelines. It aims at approximating the solution
in terms of possibly short sums of products of functions of the spatial variable x
and the velocity variable v, respectively. Rather than choosing a �xed expansion
system beforehand, the factors in such low-rank tensor approximations have to be
determined in the course of the solution process so as to generatepossibly few
terms needed to realize a given accuracy tolerance. Starting froma large �xed
background discretization of the problem, aside from its prohibitive size, would
be a delicate matter because of the nature of the PDE, so that themeaning of
an accurate solution of the discrete problem is not clear. The construction works
therefore from coarse to �ne improving on the accuracy of the current iterate in
an outer �xed point iteration tracking the solution as a function in L 2(D � V ).
Each iteration step is realized approximately within a tolerance"n depending on
the current �xed-point iteration accuracy level. Rather than view ing an iterate
un+1 as a function in L 2(D � V ) though, a key idea is to interpret the set of
states un+1 (�; v) 2 L 2(D ) for each v 2 V as an element of thesolution mani-
fold M n+1 = f un+1 (�; v) : v 2 Vg for a parameter dependent familyof transport
equations. The solution manifoldsM n are approximated by snapshotsun(�; vi),
vi 2 V , for judiciously chosen parametersvi. In this sense the method shares some
common features with the discrete ordinate method. The essential di�erence lies
in the fact that the expansion systems are not �xed beforehand but determined
adaptively in the course of the outer �xed-point iteration. Here ar e a few com-
ments on the actual realization of this process. When approximating M n+1 , the
right hand sides in the corresponding transport problems involve the application
of the scattering operator with input from the preceding approximation to M n.
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A Hilbert-Schmidt expansion of the kernel facilitates on the one hand the appli-
cation of the scattering operator and also yields a favorable form of the parameter
dependence for the main ingredient of the scheme, namely areduced basis approx-
imation to the evolving solution manifolds M n. Here we make essential use of the
results from [5] onrate-optimal reduced basis methodsfor a wide class of parameter
dependents PDEs. This class includes singular perturbed and inde�nite problems,
in particular, convection dominated convection-di�usion problems as well as pure
transport problems needed in the present context. Rate-optimality means that
the distances of the solution manifold from the reduced spaces tend to zero at the
same rate as the respective Kolmogorovn-widths, see [5, 1]. For judiciously chosen
tolerances"n, n 2 N, the �xed-point step at stage n boils then down to extending
the reduced basisf � jgNn

j=1 constructed for M n to a basisf � jgNn +1
j=1 for M n+1 so as

to meet an accuracy level�" n for a suitable � 2 (0; 1) (see above for the role of"n).
This makes also use of a robustness result in [1] combined with the convergence
of the �xed-point iteration to ensure rate-optimality of the succe ssively generated
basis. At stagen this gives rise to approximations of the form

(1)
NnX

j=1

cn,j(v)� j (x)

that approximate un(�; v), v 2 V , in L 2(D ) even uniformly in V. In principle,
the coe�cients cn,j(v) are then not yet given explicitly but can be computed by
solving a stable Petrov-Galerkin problem in the reduced space. The correspond-
ing (near-optimal) test spaces are generated through aninterior greedy loop that
can be shown to guarantee an inf-sup constant that stays uniformly away from
zero. This in turn, gives rise to an e�cient surrogate that can be used to steer
the outer greedy search for the next basis function, [5]. This buildsin an essential
way on the general strategies for contrivingwell-conditioned variational formu-
lations from [2, 3]. In particular, the equivalent formulation of Petrov-Gale rkin
schemes in terms ofsaddle pointproblems plays a crucial role in avoiding the com-
putation of explicit near-best test function systems that necessarily depend on
the parameters. We also discuss ways of deriving from (1)explicit representations
for the coe�cients cn,j(v) yielding approximations of the exact solution u(x; v)
in L 2(D � V ). On the one hand, this can be done by (quasi-)interpolation over
V. An alternative is to use Petrov-Galerkin projections this time in L 2(D � V )
from suitable low-dimensional pairs of trial and test spaces which are derived from
the pairs in L 2(D ) constructed by the greedy procedure. We brie
y discuss some
relevant norm equivalences between several graph norms that are needed for the
stability of these Petrov-Galerkin projections. We conclude with some remarks on
the complexity of such a strategy. The only problems to be solved in asu�ciently
large truth spaceare the transport problems in L 2(D ) needed to determine the re-
duced basis functions. For a given target accuracy, their numberroughly scales like
the dimension of a \Kolmogorov-best" linear space that approximates the solution
manifold corresponding tou(�; v); v 2 V , which is the exact solutionu 2 L 2(D �V ),
within that target accuracy. When these n-widths decay with some algebraic rate,
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one expects a �nite number of new basis functions in each �xed-point iteration so
that the overall number of truth-solves grows logarithmically in the target accu-
racy. These transport solves employ also stable variational formulations and give
rise to rigorous a posteriori bounds, [3]. All other Petrov-Galerkin solves as well
as the inner stabilizing greedy loops for �nding near-optimal test functions take
place in the \small" reduced spaces requiring a computational e�ort that scales
(low-order) polynomially in the reduced dimensions. Finally, the well-conditioned
stable formulations used on each level of the scheme provide rigorous a posteriori
error bounds that allow one to verify the set target accuracy, see [2, 3, 5].
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Randomized sampling of matrices: three recent results
Laurent Demanet

We brie
y review three matrix factorization methods based on randomized sam-
pling: the randomized SVD; the randomized skeleton or CUR factorization; and
matrix probing. This note is an aide-memoire for a presentation givenat Ober-
wolfach in January 2015. The author is grateful to the organizersfor their work
on a very successful event.

1. The randomized SVD

The question is to �nd the SVD of A 2 Rn� n, where A has rank close tok, from
Y = AX where X 2 Rn� (k+ p) is a gaussian random matrix with iid entries.

Once Y is computed, it can be orthogonalized into a matrix Q. We obtain
a low-rank approximation of A from QQ� A. The following result indicates how
accurately the column space information is captured by this randomsampling
method, as a function ofp. In this note, k � k is the spectral norm.

Theorem. (Halko, Martinsson, Tropp, 2009 [7])

kA � QQ� Ak � ( 1 + 11
p

(k + p)n ) � k+1 ;

where � k are the singular values ofA, and with probability 1 � 6p� p.
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In practice, a slight oversampling ofp = 5 or 10 su�ces. The SVD A = ~U � V T

can then be obtained as follows:

� Factorize Q� A = U� V T .
� Form Q (U� V T ) = ( QU) � V T = ~U � V T .

This randomized construction of the SVD is potentially useful in any application
where the SVD needs to be sped up.

2. The randomized skeleton or CUR factorization

The question is to factorizeA in skeleton form asA ' AC Z A R, where C and R
indicate restriction to subsets of columns and rows, respectively.

The middle matrix can either be formed asZopt = A+
CAA +

R (optimal in the Frobe-
nius norm), or Zpoor = A+

CR, where the pseudo-inverse is adequately regularized.
A �rst result concern the existence of subsetsC and R yielding a good skeleton
approximation, though it does not detail a practical algorithm for c omputing C
and R.

Theorem. (Goreinov, Tyrtyshnikov, Zamarshkin, 1997 [5]) There exist C, R,
such that

kA � AC Zopt ARk � (
p

1 + k(n � k) ) � k+1 :

A second result �nds C and R constructively via a rank-revealing QR decom-
position, at the expense of a slightly worse constant in the error estimate.

Theorem. (Gu, Eisenstat, 1996 [6]) There existC, R, and Z obtained from a
rank-revealing QR algorithm, such that

kA � AC Z A Rk � (
p

1 + 4k(n � k) ) � k+1 :

A third result is concerned with the case whenC and R are chosen uniformly
at random, which allows to lower the complexity of computing the factors below
O(n2) (by not having to even sample every entry of the matrix A). For uniform
sampling to be successful, we need to assume the existence of a factorization
A = U� V T with max i,j fj Uij j; jVij jg � µp

n , where � � 1 is small. HereU and V
need not contain the singular vectors, but they are assumed to beisometries.

Theorem. (Chiu, Demanet, 2011 [3]) Samplè = 10 � k logn columns and rows
uniformly at random to get C and R. Then

kA � AC Zpoor ARk � C
n
`

� k+1 ;

with probability 1 � 4kn � 2.

The complexity of forming the middle factor Zpoor is O(k3), up to log fac-
tors. Applications of the randomized skeleton factorization includethe numerical
analysis of operators, and possibly uncertainty quanti�cation.
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3. Matrix probing

The question is to recover a matrix A 2 Rn� n from the knowledge ofyk = Ax k,
where x1; : : : ; xq � N (0; I n). Assume that A belongs to a knownp-dimensional
linear subspace, i.e., there existB1; : : : ; Bp (�xed, given) such that

A =
pX

i=1

ciB i:

This assumption on A is very di�erent from the rank- k assumption that underlies
the randomized SVD. The vectorc can be solved for from the simple least-squares
formulation

0

B
@

y1
...

yq

1

C
A = A

0

B
@

x1
...

xq

1

C
A =

pX

i=1

ci

0

B
@

Bx 1
...

Bx q

1

C
A = 	 x c:

The matrix 	 x is of sizenq� p. For this matrix to be left-invertible, is is necessary
that it is tall and thin, i.e., nq � p. Probing will be successful if 	 x is furthermore
well-conditioned. This will happen if the B i are properly chosen, and ifp is small
enough, as we now detail.

The two important properties of the B i are the \weak condition numbers" �
and � , de�ned as follows.

De�nition.

� = max
i

kB ik
p

n
kB ikF

De�nition.

� = cond(N ); Nij = Tr( B T
i Bj):

A small � amount to a high rank condition, while a small � amounts to a Riesz
basis condition. The recovery result for the vector c is as follows.

Theorem. (Chiu, Demanet, 2011 [2]) For su�ciently large C, if

nq � C p (�� logp)2;

then

cond(	 x) � 2� + 1 ;

with probability 1 � O
�

pn1� C/C0
�

.

Matrix probing is useful for preconditioning large, structured systems of equa-
tions [4], and for representing singular and oscillatory kernels in numerical analysis
[1].



114 Oberwolfach Report 2/2015

References
[1] R. Belanger-Rioux, L. Demanet, Compressed absorbing bo undary conditions via matrix

probing, preprint, 2014
[2] J. Chiu, L. Demanet, Matrix probing and its conditioning , SIAM J. Num. Anal., 50-1 (2012)

171-193
[3] J. Chiu, L. Demanet, Sublinear randomized algorithms fo r skeleton de- compositions, SIAM.

J. Matrix Anal. and Appl., 34-3 (2013) 13611383
[4] L. Demanet, P. D. Letourneau, N. Boumal, H. Calandra, J. C hiu, and S. Snelson, Ma-

trix probing: a randomized preconditioner for the wave- equ ation Hessian, Appl. Comput.
Harmon. Anal. 32 (2012) 155-168

[5] S.A. Goreinov, E.E. Tyrtyshnikov, and N.L. Zamarashkin , A theory of pseudoskeleton ap-
proximations, Linear Algebra and its Applications, 261 (19 97), pp. 1{21.

[6] M. Gu and S.C. Eisenstat, E�cient algorithms for computi ng a strong rank-revealing QR
factorization, SIAM Journal on Scienti�c Computing, 17 (19 96), pp. 848{869.

[7] N. Halko, P. Martinsson, and J. Tropp, Finding structure with randomness: Probabilistic
algorithms for constructing approximate matrix decomposi tions, SIAM Review, 53 (2011),
p. 217.

Instance optimality of the maximum strategy
Lars Diening

(joint work with Christian Kreuzer)

For more than forty years adaptive �nite element methods (AFEM's ) have been a
standard tool of engineering and scienti�c computing for solving PDEs. In contrast
to uniform re�nements adaptive mesh re�nements allow to minimize the required
degrees of freedom needed to obtain a given accuracy. Although very successful in
the convergence analysis is rather recent.

The basic idea is that based on the discrete solution on some coarse mesh local
(per element or edge) a posteriori error indicators are computed. A �ner mesh is
then constructed by local re�nements in areas with large indicators. This process
is iterated until the a prescribed error tolerance is met. Up to now there are
basically two marking strategies for which optimal convergence hasbeen studied.

(a) D•or
er marking (bulk chasing): The smallest set of elements is marked
for re�nement such that the indicators on the marked elements are a �xed
bulk of the total error estimator.

(b) Maximum strategy: The elements with error indicator comparable to the
maximal indicator are marked for re�nement.

In the meantime convergence and optimality of the D•or
er marking strategy is
well understood. In [4] D•or
er (and later re�ned in [5]) showed linea r convergence
of the adaptive �nite element method (AFEM):

SOLVE ! ESTIMATE ! MARK ! REFINE

In [2], Binev, Dahmen and DeVore proved optimal convergence rates of D•or
er
marking introducing an additional coarsening step. This arti�cial re quirement was
removed in [7]. Numerous article have appeared since then, extending the results
to, various types of error estimators, general elliptic problems and di�erent type
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of �nite element methods. In summary the development for the theory of D•or
er
marking has been very successful in the last years.

For the maximum strategy not much has been known until recently. Under very
restrictive assumptions Babuska and Vogelius studied a simple one dimensional
problem in [1]. However, in the much more involved multidimensional casethere
was even no convergence theory until Morin, Sieber and Veeser showed in [6] basic
convergence. Very recently Diening, Kreuzer and Stevenson [3] proved instance
optimality of an AFEM with (modi�ed) maximum strategy for the Dirichlet model
problem

� � u = f; in 


u = 0 ; on @


with f 2 L 2(
).

Theorem. In each iteration an AFEM with (modi�ed) maximum strategy pr oduces
a quasi optimal total error with respect to the degrees of freedom (DOFs) up to a
constant.

This result has been obtained in [3] for piecewise linear ansatz functions in
two dimensions. The purpose of this talk was to present this result and further
generalisations to higher order elements.

In order to explain the main ideas we need to introduce some notation. We
denote by T? a conforming initial triangulation of a polygonal, planar domain 
.
Based on the newest vertex bisection we consider conforming re�nements ofT? ,
which have a partial order in the sense thatT� � T if T� is a re�nement of T .
For a �xed k 2 N, let V(T ) denote the subspace ofW 1,2

0 (T ) of functions, which
are piece wise polynomials of degree at mostk on every element ofT . For each
admissible triangulation T we denote byuT 2 V(T ) the Galerkin approximation
of the Poisson problem.

Since the estimator is equivalent to the error only up to some additiveso called
data oscillation term called it is reasonable that optimal convergenceof an AFEM
can only obtained with respect to the total error

kr uT � r uk2
2 + osc2

k� 1(T ):

The oscillation somehow quanti�es the resolution of the data f on the current
triangulation T . In particular, we set

osc2
α(T ) :=

X

T 2T

Z

T
h2

T jf � � T,αf j2 dx:

Here � T,α is the localL 2-projection to the space of polynomials of degree at most�
and � T,� 1f � 0.

It is well known that the Galerkin approximation uT can be equivalently char-
acterised as the minimiser of the energy functional

J (v) :=
Z




1
2

jr vj2 dx �
Z



vf dx:
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Therefore, de�ning J (T ) := J (uT ) allows us to reinterpret the AFEM as an
energy minimisation process with respect to a sequence of nested admissible re-
�nements.

We use the standard residuum based error estimator organised byedgesS of
the triangulation, i.e.

E2(T ; S) := hS

Z

S
j[r uT ]S j2 ds +

X

S is side of T

Z

T
h2

T j � � u + f j2 dx;

where hS and hT are the local mesh sizes of the edgeS and the triangle T re-
spectively and � denotes the local Laplacian, which is a piece wise polynomial of
degree at mostk � 2.

We de�ne a modi�ed energy by

G(T ) := J (T ) + osc2
k� 2(T ):

Note that we have osck� 2 here instead ofosck� 1 di�erent from the de�nition of
the total error. The modi�ed energy satis�es the following crucial properties:

(a) G is decreasing with respect to re�nement.
(b) For T� � T we have

G(T� ) � G (T ) �
X

S re�ned

E2(T ; S);

i.e., the energy di�erence is equivalent to the error estimators of the re�ned
edges up to �xed constants.

(c) The lower diamond estimate holds: If T1; : : : ; Tm are triangulations with
joint re�nement T_ and joint coarseningT ^ such that the areas of re�ne-
ment from Tj to T_ are disjoint, then the energy di�erences approximately
sum up, i.e.

G(T ^ ) � G (T_ ) �
mX

j=1

�
G(Tj) � G (T_ )

�
:

(d) We have that

G(T ) � J (u) � kr uT � r uk2
2 + osc2

k� 1(T ):

In other words, up to �xed constants, the di�erence between the modi�ed
energy and the energy of the continuous solution is equivalent to the total
error.

These are the main ingredients of the proof of instance optimality in [3], where
the casek = 1 has been studied. We show that all of these estimates are valid in
the casek � 1, which implies the desired instance optimality result of an higher
order AFEM with modi�ed maximum marking strategy.
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Anisotropic mesh adaptation for crack detection in brittle materials
Massimo Fornasier

(joint work with Marco Artina, Stefano Micheletti, and Simona Perot to)

A brittle material, subjected to an external force, �rst deforms itself elastically,
then it breaks without any intermediate phase. A mathematical model of brittle
fractures without prescribed path has been proposed by Francfort and Marigo in
[6]. The quasi-static evolution of the fracture is based on the successive minimiza-
tion of an energy designed according to the Gri�th's principle of energy balance
between elastic energy and a �ctitious crack energy:

û(t) 2 arg min
u 2 SBV (
) ,

uj 
 D = g(t) j 
 D

Z


 nSu

jr uj2dx + � H N � 1(Su);

where 
 D � 
 is the domain of the force g, � the elasticity constant, and Su
is the jump set of the function u in the special bounded variation function space
SBV (
). This approach has the advantage that the functional settin g in SBV
does not require a pre-de�ned crack path, but has the drawbacks that it evolves
through the minimization of a nonconvex and nonsmooth functional involving
unknown functions and sets and any discretization is a bias towardsa proper
fracture propagation. Bourdin, Francfort, and Marigo [4] used either very �ne
grids , with consequent very large computational times, or design meshes according
to the expected crack evolution, in order to have reliable simulations.

Typical mesh from the experiments of Bourdin, Francfort, an d Marigo .
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Burke, Ortner, and S•uli [5] proposed a fully adaptive scheme based on isotropic
mesh re�nements, leading though to the generation of extremely �ne adapted
meshes.

Respectively 300658 and 429116 elements.

In our talk we presented the results included in the papers [1, 2, 3] on the numerical
simulation of brittle fractures, building upon the work [5], but using ad aptive
anisotropic remeshing.

Signi�cantly reduced number of elements (15987) in our simu lations.

Relevant features of our adaptive anisotropic remeshing method are:

1. The number of degrees of freedom and the computational timesare dra-
matically reduced, despite the remeshing;

2. The remeshing does not alter the energy pro�le evolution;
3. On the crack tip the automatically generated mesh is nearly isotropic and

does not constitute an arti�cial bias for the crack evolution.

As a consequence of 2. and 3. we obtain always physically acceptablecrack
evolutions beyond state of the art simulations. It remains still open to provide
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rigorous proofs for the improved complexity 1. as well as for the more fundamental
properties 2. and 3.
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Reduced Basis Approximation of Noncoercive Variational In equalities
Silke Glas

(joint work with Karsten Urban)

Parabolic variational inequalities often occur in industrial or �nancia l problems,
e.g. as time dependent obstacle problems or as pricing of swing options on the
stock market. Swing options are widely used in electricity markets for the volume
and price 
exibility reasons they provide. Due to their multiple exercise property,
the pricing of swing options requires sophisticated numerical methods. The ob-
jective is to price swing options for many di�erent parameters, e.g. calibration
of volatility, interest rate or strike price. Using the setting of [12], swing options,
which are modeled by a series of parabolic variational inequalities, canbe rewrit-
ten as a cascade of European and American options. Therefore, one needs to
e�ciently solve parametrized parabolic equations for European options as well as
parametrized parabolic variational inequalities for American options.

Fine discretizations, that are needed for these problems, resolvein large scale
problems and thus in long computational times. To reduce the size ofthese prob-
lems, we use the Reduced Basis Method (RBM)[9]. The ambition of the RBM is to
e�ciently reduce discretized parametrized partial di�erential equ ations. Problems
are considered, where not only a single solution is needed, but solutions are wanted
for a whole range of di�erent parameter con�gurations. For the European options,
we can apply standard RBMs for parabolic equations, e.g. [5, 11], whereas for the
American options, we need new methods to treat the reduction of the parabolic
variational inequalities.

In the context of variational inequalities, RBM have initially been applie d to
the elliptic setting [6]. Based on this, [7] applies RBM to parabolic variational
inequalities for American options, but does not provide error estimators. Recently,
we have been aware of [1], which presents a time stepping error estimator.
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Indeed, improved error estimators for parabolic equations could be achieved by
linking the RBM with the space-time formulation [11]. Using space-time formula-
tions [10], we do not have a time stepping scheme anymore, but take the time as an
additional variable in the variational formulation of the problem. Com bining the
RBM with the space-time formulation, we derive a noncoercive Petrov{Galerkin
variational inequality problem [3]. For this case, the standard theory for the well-
posedness does not hold. We derive the necessary conditions for wellposedness
and therefore extend the results from [8]. Using this framework, an error estima-
tor based on the residuum. We present numerical results for a parametrized heat
inequality model [4], particularly, we perform experiments focusing on rigor and
e�ciency of the error estimator depending on the shape of the obstacle.

Further research will be devoted to the search for suitable stablereduced test
spaces using the double greedy approach [2].

Acknowledgements.This research was supported by the Deutsche Forschungs-
gemeinschaft (DFG) under SPP1324. The research of Karsten Urban was also
supported by the DFG under GrK 1100.
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Ridgelet Discretization of Linear Transport Equations
Philipp Grohs

(joint work with Axel Obermeier)

We presented a novel method for the numerical solution of linear transport equa-
tions of the form

(1) s � r u(x) + � (x)u(x) = f (x);

where

s 2 Sd� 1; and 
 � Rd;

and subject to appropriate boundary conditions.
Our motivation comes from the desire to e�ciently solve kinetic trans port equa-

tions (arising for instance in radiative transport or statistical mechanics e.g. the
Boltzmann equation) which are in general of the form

(2) s � r u(x; s) + � (x; s)u(x; s) = f (x; s) + Q(u)(x; s)

where Q is a scattering or collision operator.
The numerical discretization of such equations is challenging, mainly due to

the fact that the above equation is not elliptic (making it di�cult to pre condition
the arising linear system of equations) and singularities can be transported along
rays which may result in solutions u which are discontinuous across the transport
direction s.

The purpose of this talk was to present a novel, ridgelet-based discretization of
(1) and use this discretization for the numerical solution of the full kinetic transport
equation (2) either using a (sparse) collocation approach in the direction s or a
tensor product construction [1].

Due to the fact that ridgelet systems are well adapted to the structure of lin-
ear transport operators, it can be shown that our scheme operates in optimal
complexity, even if line singularities are present in the solution [2].

Many questions remain for future work, in particular the problem of good
ridgelet constructions for �nite domains 
.
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Hybrid numerical-asymptotic boundary element methods for high
frequency wave scattering

David P. Hewett
(joint work with Simon Chandler-Wilde, Stephen Langdon, Ashley Twigger,

Samuel Groth, Markus Melenk)

There has been considerable interest in recent years in the development of numeri-
cal methods for time-harmonic acoustic and electromagnetic wavescattering prob-
lems that can e�ciently resolve the scattered �eld at high frequencies. Standard
�nite or boundary element methods (FEMs and BEMs), with piecewisepolynomial
approximation spaces, su�er from the restriction that a �xed num ber of degrees of
freedom is required per wavelength in order to represent the oscillatory solution,
leading to excessive computational cost when the scatterer is large compared to
the wavelength.

The hybrid numerical-asymptotic (HNA) approach aims to reduce the number
of degrees of freedom required, by enriching the numerical approximation space
with oscillatory functions, chosen using partial knowledge of the high frequency
(short wavelength) asymptotic behaviour of the solution. The BEM setting is
particularly attractive for such an approach, since knowledge of the high frequency
asymptotics is required only on the boundary of the scatterer; for a recent review
of the HNA methodology in the BEM context see [3]. In this setting onetakes the
relevant boundary value problem, which in the acoustic case involvesthe Helmholtz
equation

(� + k2)u = 0 ;(1)

where the wavenumberk is proportional to the frequency of the incident wave, and
reformulates it as a boundary integral equation on the boundary � of the scat-
terer, with frequency dependent solutionV . Then, informed by a high frequency
asymptotic theory such as the Geometrical Theory of Di�raction ( GTD) (see e.g.
[11, 2]), one seeks to approximateV using an HNA ansatz of the form

(2) V (x; k ) � V0(x; k ) +
MX

m=1

Vm(x; k ) exp(ik m(x)) ; x 2 � ;

where V0 is a known oscillatory function (e.g., the leading order term in GTD
approximation), the phases m are chosena-priori (e.g., from partial knowledge
of the higher order GTD components) and the amplitudesVm, m = 1 ; : : : ; M , are
approximated numerically. The key idea is that if V0 and  m, m = 1 ; : : : ; M , in
(2) are chosen wisely, thenVm, m = 1 ; : : : ; M , will be much less oscillatory than
V and so can be better approximated by piecewise polynomials thanV itself.

The nature and complexity of the HNA ansatz (2) is inherently problem-depen-
dent, being governed by the underlying high frequency asymptotics of the solution,
which themselves depend strongly on the geometry of the scatterer and the form
of the incident wave. As a result, the HNA approach has been appliedso far
mainly to problems for which these asymptotics are relatively simple (mostly 2D
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problems, with the exception of [6] and [3,x7.6], and mostly convex scatterers,
with the exception of [4]). But for many such problems (e.g., scattering by sound-
soft smooth convex obstacles in 2D [5, 1], convex [10] and nonconvex [4] polygons
and 2D planar screens [9] - see [3] for further examples) the HNA approach has
proved to be very e�ective, providing a dramatic reduction in the number of de-
grees of freedom at high frequencies, and in some cases even frequency-independent
computational cost (when the numerical integration required for practical imple-
mentation is carried out using appropriate oscillatory quadrature routines), see,
e.g., [9].

In my talk I will outline the basic HNA methodology in the BEM context,
and will highlight some of the interesting analytical and numerical challenges it
presents. One such challenge is that to design HNA approximation spaces opti-
mally, and to prove their e�ectiveness by rigorous numerical analysis, one needs
to derive regularity estimates for the amplitudes Vm, m = 1 ; : : : ; M , which are
explicit in their wavenumber dependence. This requires rigorous highfrequency
asymptotics of a type not typically available in the asymptotics literat ure. For
instance, the HNA BEMs presented in [10, 4, 8] for scattering of acoustic plane
waves by sound-soft polygons adopt anhp approximation strategy for the ampli-
tudes Vm, m = 1 ; : : : ; M , with mesh re�nement towards corner singularities (and
towards geometrical shadow boundaries in the case of [8]). In order to apply stan-
dard hp techniques to obtain best approximation error estimates, one �rst has to
derive non- standard wavenumber-explicit bounds on the analytic continuation of
Vm, m = 1 ; : : : ; M , into the complex plane.

I will also give an overview of current research into the developmentand anal-
ysis of HNA methods for more general scattering problems involvingnonconvex
scatterers [4, 8], 3D scatterers, and transmission problems [7], where complicated
multiple scattering and shadowing e�ects present interesting challenges.
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Sparse BEM for the heat equation
Helmut Harbrecht

(joint work with Christoph Schwab and Johannes Tausch)

1. Introduction

This talk is concerned with the numerical solution of the heat equation

@tu � � u = 0 in 
 � I

u = f on � � I

u = 0 on 
 � f 0g

via boundary integral equations, where 
 � R3 is a domain with Lipschitz bound-
ary � := @
 and I = (0 ; T) is a time interval. To this end, we introduce the
thermal single layer operator

Vg(x; t) =
Z t

0

Z

�
G(kx � yk; t � � )g(y ; � ) d� y d�

where x 2 � and G(�; �) is the heat kernel, given by

G(r; t ) =
1

(4�t )3/2
exp

�
�

r 2

4t

�
; t � 0 and G(r; t ) = 0 ; t < 0:

Thus, the potential ansatz

u(x; t) =
Z t

0

Z

�
G(kx � yk; t � � )g(y ; � ) d� y d�

leads to the boundary integral equation

(1) Vg = f on � � I:

2. Galerkin scheme

The thermal single layer operator is a symmetric, elliptic and continuous operator
with respect to the its energy space (see [1] for the details). Hence, we may apply
a Galerkin discretization without further restriction.

Consider two sequences of nested ansatz spaces

V �
0 � V �

1 � � � � � V �
j � � � � � L 2(�) ;

V I
0 � V I

1 � � � � � V I
j � � � � � L 2(I )
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W �
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3
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4
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3
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1

V �
0
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0

Figure 1. Visualization of the sparse tensor product space.

such that

j� �
j j = dim V �

j � 4j ; j� I
j j = dim V I

j � 2j:

Instead of using the full tensor product spaceU � � I
j := V �

j 
 V I
j for the Galerkin

discretization of (1), we shall consider the related sparse tensorproduct space.
The starting point are the multilevel decompositions

V �
j = W �

0 � W �
1 � � � � � W �

j ;

V I
j = W I

0 � W I
1 � � � � � W I

j :

Then, the sparse tensor product space is given by

bU � � I
j =

M

ℓ+ ℓ0� j

W �
ℓ 
 W I

ℓ0 =
jM

ℓ0=0

� j� ℓ0
M

ℓ=0

W �
ℓ

�

 W I

ℓ0 =
jM

ℓ0=0

V �
j� ℓ0 
 W I

ℓ0;

as illustrated in Figure 1. Notice that only a wavelet basis in time is necessary to
obtain a basis in the sparse tensor product space.

The sparse tensor product space contains much less unknowns compared to the
full tensor product space: dimbU � � I

j � 4j instead of dimU � � I
j � 8j. This means

that the time discretization is for free. Nevertheless, the approximation property
in the sparse tensor product space is essentially the same as in the full tensor
product space, provided that we spent some extra smoothness interms of the
mixed Sobolev spaces. Notice that the construction of the sparsetensor product
space can be much improved by using generalized sparse grids and ansatz functions
with di�erent polynomial orders in space and in time, see [2].
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3. Fast matrix-vector multiplication

For the matrix-vector multiplication, we need to be able to apply the matrix blocks
of the form

V ` ,` 0 := hV(	 �
ℓ0

1

 	 I

ℓ0
2
); 	 �

ℓ1

 	 I

ℓ2
i L2 (� � I) ;

where k`k1; k` 0k1 � j . We aim at approximating such blocks by a low-rank ap-
proximation

(2) V ` ,` 0 �
MX

i=1

A (i)
ℓ2 ,ℓ0

2

 B (i)

ℓ1 ,ℓ0
1

where M is at most a power of j . Then, as proposed in [4], the matrix-vector
multiplication can be performed in essentially linear complexity provided that
A (i)

ℓ2 ,ℓ0
2

and B (i)
ℓ1 ,ℓ0

1
can be computed in essentially linear complexity. In particular,

by use of prolongations and restriction, it su�ces to make available quadratic
matrices A (i)

ℓ2 ,ℓ0
2

and B (i)
ℓ1 ,ℓ0

1
with `1 = `0

1 and `2 = `0
2.

A semi-discretization of the heat kernel in time leads to anH-matrix, cf. [3].
Exploiting that this H-matrix is a Toeplitz matrix, we arrive at a low-rank ap-
proximation of the form (2). In space, we apply the multipole method as proposed
in [5]. Putting these ingredients together, we obtain an algorithm which solves the
boundary integral equation (1) in the sparse tensor product space in essentially
linear complexity.
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hp {Version Discontinuous Galerkin Methods on Polygonal and
Polyhedral Meshes

Paul Houston
(joint work with Paola Antonietti, Andrea Cangiani, Emmanuil Georgo ulis, and

Stefano Giani)

The numerical approximation of partial di�erential equations (PDE s) posed on
complicated domains which contain `small' geometrical features, or so-called micro-
structures, is of vital importance in engineering applications. In such situations, an
extremely large number of elements may be required for a given meshgenerator to
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produce even a `coarse' mesh which adequately describes the underlying geometry.
With this in mind, the solution of the resulting system of equations emanating, for
example, from a �nite element discretization of the underlying PDE of engineering
interest on the resulting `coarse' mesh, may be impractical due to the large number
of degrees of freedom involved. Moreover, since this initial `coarse' mesh already
contains such a large number of elements, the use of e�cient multi-level solvers,
such as multigrid, or domain decomposition, using, for example, Schwarz-type
preconditioners, may be di�cult, as an adequate sequence of `coarser' grids which
represent the geometry are unavailable.

In recent years, a new class of �nite elements, referred to as Composite Fi-
nite Elements (CFEs), have been developed for the numerical solution of partial
di�erential equations, which are particularly suited to problems characterized by
small details in the computational domain or micro-structures; see, for example,
[5, 4], for details. This class of methods are closely related to the Shortley-Weller
discretizations developed in the context of �nite di�erence approximations, cf. [6].
The key idea of CFEs is to exploit general shaped element domains upon which
elemental basis functions may only be locally piecewise smooth. In particular, an
element domain within a CFE may consist of a collection of neighbouring elements
present within a standard �nite element method, with the basis function of the
CFE being constructed as a linear combination of those de�ned on the standard
�nite element subdomains. In this way, CFEs o�er an ideal mathematical and
practical framework within which �nite element solutions on (coarse) aggregated
meshes may be de�ned.

In this talk, we consider the generalisation of CFE schemes to the case whenhp{
version discontinuous Galerkin composite �nite element methods (DGCFEMs) are
employed, cf. [1]. In particular, we propose a new interior penalty scheme char-
acterized by a careful choice of the discontinuity-penalization parameter, which
permits the use of polygonal/polyhedral elements such that

� mesh element faces may have arbitrarily small measure in two dimensions;
� both mesh element faces and edges may have arbitrarily small measure in

three dimensions.

The approach is based on exploiting a new inverse inequality relevant to elements
with elemental interfaces whose measure is potentially much smaller than the mea-
sure of the corresponding element, cf. [3]. On the basis of this inverse inequality,
together with appropriate approximation results on general polygons/polyhedra,
we derivea priori error bounds for the proposed IP DGCFEM. Furthermore, the
application of this class of methods within Schwarz-type domain decomposition
preconditioners will be considered, cf. [2].

References
[1] P.F. Antonietti, S. Giani, and P. Houston. hp{Version composite discontinuous Galerkin

methods for elliptic problems on complicated domains. SIAM J. Sci. Comput. , 35(3):A1417{
A1439, 2013.



128 Oberwolfach Report 2/2015

[2] P.F. Antonietti, S. Giani, and P. Houston. Domain decomp osition preconditioners for Dis-
continuous Galerkin methods for elliptic problems on compl icated domains. J. Sci. Comput. ,
60(1):203{227, 2014.

[3] A. Cangiani, E.H. Georgoulis, and P. Houston. hp{Version discontinuous Galerkin methods
on polygonal and polyhedral meshes. Math. Models Methods Appl. Sci. , 24(10):2009{2041,
2014.

[4] W. Hackbusch and S.A. Sauter. Composite �nite elements f or problems containing small
geometric details. Part II: Implementation and numerical r esults. Comput. Visual Sci. , 1:15{
25, 1997.

[5] W. Hackbusch and S.A. Sauter. Composite �nite elements f or the approximation of PDEs
on domains with complicated micro-structures. Numer. Math. , 75:447{472, 1997.

[6] G.H. Shortley and R. Weller. Numerical solution of Lapla ce's equation. J. Appl. Phys , 9:334{
348, 1938.

On low-rank approximability of solutions to operator equat ions and
eigenvalue problems

Daniel Kressner
(joint work with Luka Grubi�si�c, Andr�e Uschmajew)

We consider the approximate solution of tensor equations and eigenvalue problems
of the form

(1) A(X ) = B; A(X ) = � X ;

whereB; X 2 Rn����� n are tensors of orderd and A 2 Rn����� n ! Rn����� n is a lin-
ear operator. Such problems arise in a variety of applications, including the struc-
tured discretization of PDE boundary and eigenvalue problems on ad-dimensional
hypercube; we refer to the survey [GraKT13] for a more comprehensive overview.

As d increases, the solution of (1) by standard linear algebra techniques becomes
quickly infeasible, due to the exponential growth of the degrees offreedom. Low-
rank matrix and tensor approximation techniques have been remarkably successful
at obtaining highly accurate solutions to various instances of (1). To understand
the success of these techniques and to decide a priori whether they can be applied
to a given problem, it appears to be important to study under which conditions
on the given data A; B one can expect good low-rank approximability ofX . In
the following, we summarize some new contributions in this direction.

The cased = 2 has been studied intensively in the literature, in particular for
the special case of a Lyapunov matrix equation:

AX + XA T = � bbT ; A 2 Rn� n; b 2 Rn:

The situation is particularly clear when A is a symmetric negative de�nite matrix,
in which case it can be shown that the singular values ofX satisfy the following
bound [Sab06, GruK14]:

(2) � r+1 (X ) �
8

j� max (A)j
exp

�
�

r� 2

log(8� (A))

�
kbk2

2;
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where � (A) = kAk2 kA � 1k2 and � max (A) denote the condition number and the
largest eigenvalue ofA, respectively. The situation is less clear case for nonsym-
metric A, in particular when A is highly non-normal; see [BakES14] for a recent
discussion.

The exponential decay rate in (2) depends rather mildly on the condition num-
ber of A. Nevertheless, the bound deteriorates as� (A) ! 1 and therefore does
not admit an extension to Lyapunov operator equations with unbounded coe�-
cients. This question has been addressed in [GruK14], where it is shown that the
r th (generalized) singular value ofX decays exponentially in

p
r , provided that

the involved operator A generates an exponentially stable analytic semigroup, and
A is either self-adjoint or diagonalizable with its eigenvalues contained ina strip
around the real axis. Numerical experiments with discretizations of 1D and 2D
PDE control problems con�rm this decay.

It turns out to be di�cult to derive decay bounds of the form (2) fo r more
general linear matrix equations, such as

AX + XA T + NXN T = � bbT ;

which play a role in bilinear and stochastic systems, see, e.g., [BenB13,BenD11].
The bound (2) relies on the diagonalization ofA and therefore can only be extended
if A and N can be diagonalized simultaneously, that is, if they commute with each
other. As this condition is usually not satis�ed in applications, one needs to resort
to completely di�erent techniques.

In [KreU14], a general framework for obtaining low-rank approximability of
solutions to matrix and tensor equations has been developed. Ford = 2, one
considers a �xed-point iteration

X n+1 = �( X n); X n 2 HS(H1; H2)

for Hilbert spaces H1; H2 and an appropriately chosen energy functionalF :
HS(H1; H2) ! R+ for measuring convergence to the �xed pointX . The following
assumptions are imposed:

(A1) Contraction in energy: There exists 0< q < 1 such that

F (X n+1 ) � q2F (X n):

(A2) Finite rank growth: There exists R > 1 s.t.

rank(X n+1 ) � R � rank(X n):

(A3) Stability with respect to k � kHS : There exists 
 > 0 such that


 kX � X nk2
HS � F (X n):

Under these assumptions, it is shown that the singular values� k of X satisfy

(3)
q

� 2
r+1 + � 2

r+2 + � � � �
r

� 1




�
1
r

�
�
� ln q

ln R

�
�

;

where � 1 is the smallest value ofF that can be attained on a certain subset of
nonzero rank-1 matrices. This tail bound can be turned into (algebraic) decay
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bounds for the singular values, using standard techniques. To apply them to (1)
for d = 2, standard stationary iterations, like the gradient method, for solving
linear systems and eigenvalue problems can be plugged into �; see [KreU14] for
more details.

The extension of the above result to the cased > 2 is fairly straightforward
provided that an SVD-based format like the tensor train decomposition [Ose11]
or the hierarchical Tucker decomposition [HacK09] is used for the low-rank ap-
proximation of the involved tensors. Instead of (A2), one then needs to assume
that the application of the �xed point map results in a constant grow th of the
corresponding tensor ranks (e.g., TT ranks or hierarchical Tucker ranks). Again,
we refer to [KreU14] for more details.

It should be noted that (3) results in algebraic decay bounds that are sub-
stantially weaker than what is typically observed in applications. Future work
will therefore aim at exploiting additional structure of A for particular classes of
applications.
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Adaptive Approximations of Parametric PDE-Constrained Co ntrol
Problems

Angela Kunoth
(joint work with Christoph Schwab)

Optimization problems constrained by linear PDEs (partial di�erentia l equations)
are challenging from a computational point of view: one needs to solve asystem of
PDEs coupled globally in space, and, in addition,globally in time if the underlying
PDE is time-dependent. This global coupling is an unavoidable featureof such
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control problems where typically an adjoint PDE comes into place as speci�ed
next.

PDE-constrained control problems. Let Y; U be Hilbert spaces overR which
shall host the statey of a system and acontrol by which the state can be in
uenced.
Let J : Y � U ! R be a twice di�erentiable functional, and K : Y � U ! Y 0 be a
(in y; u Fr�echet-) di�erentiable function where Y 0 denotes the topological dual of
Y . Consider the constrained minimization problem

(1) inf
(y,u)2 Y � U

J (y; u) subject to K (y; u) = 0 :

For the constraints K (y; u) = 0 (which will be the PDE later), we assume that
there exists a unique solutiony 2 Y for the case that u 2 U is given. A typical
way to solve (1) is to compute the zeroes of the �rst order Fr�echet derivatives of
the corresponding Lagrangian functional, de�ned by introducing a new variablep,
the costateor adjoint state in terms of which the constraints are appended to the
functional, i.e., L (y; u; p) := J (y; u) + hK (y; u); pi Y 0� Y with L : Y � U � Y ! R.
Denoting by L z(y; u; p) := ∂

∂z L(y; u; p) and L zz(y; u; p) := ∂2

∂z2 L(y; u; p) the �rst
and second variation, of L with respect to z = y; u; p, and assuming that J is
quadratic in both y; u and K linear in y; u, the necessary conditions for optimality
yield the linear system of equations

(2)

0

@
L yy L yu K �

y
L uy L uu K �

u
K y K u 0

1

A

0

@
y
u
p

1

A = g () :
�

A B �

B 0

� �
(y; u)>

p

�
= g () : G q = g

with some right hand side g and C � denoting the dual of C. The Hessian ofL or
the Karush-Kuhn-Tucker (KKT) operator G has for suchlinear-quadratic problems
constant entries, and the necessary conditions are also su�cient. Moreover, if J or
K do not contain products yu, one hasL yu = L uy = 0 so that A is a block diagonal
operator. Typically, the quadratic functional (1) contains inner p roducts so that
the resulting Riesz operatorsL yy, L uu are symmetric which implies that A and,
thus, G is symmetric. Moreover, in all the cases we consider,A : V ! V ; B : V !
Q0 for some Hilbert spacesV, Q are continuous, ImB = Q0 and A is invertible on
Ker B so that the saddle point problem (2) has forg 2 V 0 � Q 0 a unique solution
q 2 V � Q by the Brezzi-Fortin theory. Thus, we can consider constrained linear-
quadratic minimization problems as symmetric saddle point problems(2) with a
boundedly invertible linear mapping G : V � Q ! V � Q 0 where V := Y � U and
V := Q. Let me present some standard examples from [6] to which this scenario
applies and specify the corresponding system (2).

Dirichlet problem with distributed control. Consider the standard weak
formulation of a second order elliptic PDE with homogeneous boundary conditions.
Choosing Y := H 1

0 (
) and U := Y 0, we consider for givenf 2 Y 0 the linear
operator equation

(3) K (y; u) := Ay � f � u = 0
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and quadratic objective functional

(4) J (y; u) :=
1
2

ky � y� k2
Y +

!
2

kuk2
Y 0

for a given target state y� 2 Y and any �xed weight parameter ! > 0. We assume
that A : Y ! Y 0 is a linear (not necessarily symmetric) boundedly invertible oper-
ator. The norms in (4) can be norms on Hilbert spaces as long as the constrained
optimization system (1) is well-posed.

Denote by R : Y ! Y 0 the Riesz operator de�ned by the inner product (�; �)Y
inducing k � kY , hv; Rwi Y � Y 0 := ( v; w)Y ; v; w 2 Y . Since (�; �)Y is symmetric, R is
also. The Lagrangian is now of the form

(5) L (y; u; p) =
1
2

hy� y� ; R(y� y� )i Y � Y 0 +
!
2

hu; R � 1ui Y � Y 0 + hAy � f � u; pi Y 0� Y

Thus, the system (2) becomes

(6)

0

@
R 0 A �

0 !R � 1 � I
A � I 0

1

A

0

@
y
u
p

1

A =

0

@
Ry�

0
f

1

A ;

i.e., A = diag( R; !R � 1) and B = ( A; � I ). The system matrix G de�ned in (6) is
symmetric sinceR is. Moreover, A is positive de�nite and B has full rank since,
by assumption, the PDE constraints have a unique solution for givenu. Thus, the
resulting saddle point operator G is symmetric and boundedly invertible.

Parabolic PDE with distributed control. The constraint K (y; u) = 0 in
(1) is here a linear parabolic evolution PDE in full space-time weak formulation
from [9] (in a variation). The parabolic operator equation is formulated such
that the resulting operator B is boundedly invertible from X := L 2(I ) 
 Y to
Y0 := (( L 2(I ) 
 Y ) \ (H 1

T (I ) 
 Y 0))0 whereH 1
T (I ) is the closure of the functions in

H 1(I ) which vanish at end time T and I := (0 ; T) denotes the time interval. The
constraints are of the form (3) with the parabolic evolution operator B = @t + A in
full weak space-time form in place ofA, see [5] for details. Choosing the objective
function then as in (4) with the obvious changes for the norms, i.e., using the
norms for X , Y, we arrive at a system very similar to (6) with symmetric A =
diag(R1; !R 2) with the respectively de�ned Riesz operators. The corresponding
operator G is here a boundedly invertible mapping fromZ := X � Y 0 � X onto
Z 0.

Adaptive wavelet methods for the parabolic pde-control pro blem. In
view of the fully in spaceand time coupled system (2), conventional time-stepping
methods require an enormous storage. In contrast, adaptive methods in both
space and time which aim at distributing the available degrees of freedom in an a-
posteriori-fashion to capture singularities are most promising. Employing wavelet
schemes for full weak space-time formulations of the parabolic PDEs, we can prove
convergence and optimal complexity for control problems constrained by a linear
parabolic PDE [5], generalizing the ideas from [3] for control problemsconstrained
by an elliptic PDEs.
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Parametric control problems. Yet another level of challenge are control prob-
lems constrained by evolution PDEs involving stochastic or countablymany in�-
nite parametric coe�cients: for each instance of the parameters, this requires the
solution of the complete control problem (2).

Our method of attack is based on the following new theoretical paradigm devel-
oped for elliptic PDEs in [1, 2]. It is �rst shown for control problems constrained
by evolution PDEs, formulated in full weak space-time form as in [9], that state,
costate and control areanalytic as functions depending on these parameters. We
establish that these functions allow expansions in terms of sparse tensorized gen-
eralized polynomial chaos (gpc) bases. Their sparsity is quanti�ed interms of
p-summability of the coe�cient sequences for some 0< p � 1. Resulting a-priori
estimates establish the existence of an index set forsimultaneousapproximations
of state, co-state and control for which the gpc approximationsattain rates of best
N -term approximation. This entails corresponding sparse realizationsin terms of
deterministic adaptive Galerkin approximations of state, co-stateand control on
the entire, possibly in�nite-dimensional parameter space, see [6]. We specify in
[7] how to realize these Galerkin approximations by the techniques in [8] and the
realizations in [4] for a single PDE.
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Recent results on greedy algorithms and the reduced basis me thod for
high-dimensional partial di�erential equations

Tony Lelièvre

Approximating high-dimensional functions which are de�ned as solutions to par-
tial di�erential equations (PDEs) is a problem which appears in many contexts
(kinetic models, quantum mechanics, �nance, uncertainty quanti� cation, optimiza-
tion problems, etc...). Many techniques have been proposed in the literature to
deal with such problems and we focus here on Proper Generalized Decomposition
(greedy algorithms) and reduced basis techniques.

The principle of the Proper Generalized Decomposition (PGD) introduced by
A. Nouy and F. Chinesta in di�erent contexts is to approximate the solution to a
PDE as a sum of tensor products:

u(x1; : : : ; xd) '
nX

k=1

r 1
k(x1) : : : r d

k(xd)

where the successive terms in the sum are computed in a greedy way, one after the
other. As an example, one could think of a Poisson problem in high dimension,
which can be written in a variational form as:

Find u 2 H 1
0 ([0; 1]d); u 2 argminv2 H1

0 ([0 ,1]d )
1
2

Z

[0,1]d
jr vj2 �

Z

[0,1]d
fv:

Let us denote E(v) = 1
2

R
[0,1]d jr vj2 �

R
[0,1]d fv the functional involved in the

variational formulation. Then, the greedy algorithm (PGD) writes:

8n � 0; compute (r 1
n; : : : ; r d

n) 2 H 1([0; 1])d such that

(r 1
n; : : : ; r d

n) 2 argmin (s1 ,...,sd )2 H1 ([0,1])d E

 
n� 1X

k=1

r 1
k(x1) : : : r d

k(xd) + s1(x1) : : : sd(xd)

!

:

At each iteration, one thus has to compute d functions of a one-dimensional
variable (instead of a function of ad-dimensional variable for the original problem):
this is why the algorithm can be used even in high dimension (sayd of the order
of 10). The question then is of course whether one can prove that

un =
nX

k=1

r 1
k(x1) : : : r d

k(xd)

converges tou.
In [1], we prove that under suitable assumptions, the algorithm indeed converge

in the sense that un strongly converges tou in the norm of the Hilbert space on
which the functional E is de�ned (namely H 1

0 ([0; 1]d) for the example above). This
requires in particular some convexity assumption onE. The proof is based on ideas
developed in the �eld of nonlinear approximation theory by V. Temlyak ov, R. De
Vore and co-workers.

In practice, the solution (r 1
n; : : : ; r d

n) to the minimization problem is approxi-
mated by considering the associated Euler equations. In the case of the Poisson
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equation presented above, these Euler equations are a system ofd one-dimensional
Poisson problems, coupled through non-linear terms. Starting from a linear prob-
lem, we thus end up with, at each iteration, a non-linear problem to besolved. This
is the price to pay in order to reduce the complexity of the problem asa function
of the dimension d. This is very much reminiscent to what happens in electronic
structure computations, when the Schr•odinger equation (high dimensional linear
eigenvalue problem) is approximated using a variational principle restricted to
Slater determinants, which leads to a low dimensional nonlinear eigenvalue prob-
lem.

Among the current open questions on this type of algorithm, let us mention
the extension to parameterized eigenvalue problems, or the treatment of non-
symmetric problems (which are not naturally associated with a minimization prob-
lem as above). From a numerical analysis point of view, it would be interesting
to show that if the solution to the PDE admits a rapidly converging separated
representation, then the greedy algorithm does indeed also converge very quickly.

The reduced basis technique (proposed and developed by Y. Maday, A. Pa-
tera and co-workers) is another technique which is restricted to the setting of
parametrized PDEs. To make it concrete, let us consider as an example the pa-
rameterized Poisson problem:

Find u 2 L 2([0; 1]d; H 1
0 ([0; 1]2)) ; divx(a(�; x )r xu) = f (x)

where � 2 [0; 1]d is the parameter and x 2 [0; 1]2 is the space variable. Here,
and contrary to the previous setting, the di�erential operators only act on a low-
dimensional variables (namelyx 2 [0; 1]2) and the high-dimensionality of the prob-
lem comes from the parameter� 2 [0; 1]d. The problem is thus to approximate
the solution u(�; x ) to this problem.

The reduced basis technique consists in: (i) building in an o�ine stage are-
duced basis, namely accurate solutionsu(� i; x) for some well chosen values� i of
the parameters (where 1� i � N̂ with N̂ small compared to the total number
of degrees of freedom used to approximate the functionsu(� i; �)) and then (ii)
approximating in the online stage the solution to the original problem using a
Galerkin procedure on the linear space spanned byf u(� 1; �); : : : ; u(� N̂ ; �)g. The
choice of the parametersf � i; 1 � i � N̂ g is based on a greedy procedure, using
some a posteriori estimator which gives a reliable estimate of the error introduced
by approximating the solution by a Galerkin procedure on the reduced basis.

While trying to apply this technique to an industrial problem (aeroacoustic
problems around an airplane, solved by a coupled boundary element method -
�nite element method, in collaboration with Airbus), two problems wer e identi�ed:
(i) the a posteriori estimator which is usually used is very sensitive toround-o�
errors and (ii) the implementation of the method is very intrusive: it r equires to
enter deeply into the industrial codes in order to retrieve the matrices which are
built to construct the linear problem to be solved. Using techniques based on
the empirical interpolation method introduced by M. Barrault, Y. Ma day, Nguyen
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and A. Patera in 2004, we were able to propose solutions to the two problems
mentioned above, see [2, 3].

Let us �nish this short review by an original and hopefully illuminating pr e-
sentation of the empirical interpolation method (EIM) (see also the recent work
by M. Bebendorf, Y. Maday and B. Stamm for similar ideas). The aim of EIM
is to build a seperated representation of a functionf : X � Y ! R using two
ingredients. The �rst one is the following result: For given interpolat ion points
(x1; : : : ; xd) 2 X d and (y1; : : : ; yd) 2 Y d, if the matrix ( f (xi; yj))1� i,j� d is in-
vertible, then there exists an interpolating function I d(f ) : X � Y ! R which
writes:

I d(f )(x; y) =
X

1� i,j� d

D i,j f (xi; y)f (x; yj)

such that,

� 8 k 2 f 1; : : : ; dg, 8y 2 Y , f (xk; y) = I d(f )(xk; y)
� 8 x 2 X , 8l 2 f 1; : : : ; dg, f (x; yl) = I d(f )(x; yl).

Indeed, it is easy to check that these properties are satis�ed by choosing D =
F � T . The second ingredient is a procedure to choose the interpolation points
(x1; : : : ; xd) 2 X d and (y1; : : : ; yd) 2 Y d using a greedy procedure. Let us consider
k�kY a norm onY. One iterates onk � 0 the following. Assume that (x1; : : : ; xk) 2
X k and (y1; : : : ; yk) 2 Y k have been built, and assume that the associated matrix
(f (xi; yj))1� i,j� k is invertible. Let us denote I k(f ) the associated interpolated
function. Then, the next points ( xk+1 ; yk+1 ) are de�ned by:

(1)

8
<

:

xk+1 = arg max
x2X

kf (x; �) � I k(f )(x; �)kY

yk+1 = arg max
y2Y

jf (xk+1 ; y) � I k(f )(xk+1 ; y)j:

The greedy procedure stops ifjf (xk+1 ; yk+1 ) � I k(f )(xk+1 ; yk+1 )j = 0.
It can be checked that if the matrix ( f (xi; yj))1� i,j� k is invertible and if

jf (xk+1 ; yk+1 ) � I k(f )(xk+1 ; yk+1 )j 6= 0 ;

then the matrix ( f (xi; yj))1� i,j� k+1 is also invertible. In addition, if ( xk+1 ; yk+1 )
satis�es (1), then jf (xk+1 ; yk+1 ) � I k(f )(xk+1 ; yk+1 )j = 0 implies that f (x; y) =
I k(f )(x; y) for all ( x; y) 2 X � Y .

These results imply that either the greedy procedure stops aftera �nite num-
ber k of iterations, which means that f (x; y) = I k(f )(x; y), or the greedy procedure
can be pursued, and one can de�ne recursively a sequence of interpolating func-
tions (I k(f ))k� 1 such that the interpolation error is non increasing.
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Adaptive Wavelet Schwarz Methods for Nonlinear PDEs
Dominik Lellek

(joint work with Stephan Dahlke, Shaun Lui, Rob Stevenson)

In this talk, we present adaptive wavelet domain decomposition methods for the
numerical solution of nonlinear partial di�erential equations. In th e �rst part, we
will be concerned with semilinear elliptic equations of the form

Au + G(u) = f;

where A 2 L(H t
0(
) ; H � t(
)) is a linear elliptic operator, G : H t

0(
) ! H � t(
)
is a nonlinear mapping given by a Nemitsky operator andf 2 H � t(
). A typical
example is the disturbed Poisson equation� � u + u3 = f . With the help of a
wavelet Riesz basis 	 = f  λgλ2 � for H t

0(
), this equation can be rewritten in the
sequence spacè2(�) as

Au + G(u) = f ;
with A ; G : `2(�) ! `2(�) and f 2 `2(�). Using this discretized version, adap-
tive wavelet methods based on a Richardson iteration or Newton's method were
developed in [1]. It can be shown that, under reasonable assumptions, these meth-
ods are convergent and asymptotically optimal. The latter means that if the best
N -term tree approximation to the solution converges with a given rate s > 0, i.e.,

inf fk u � vkℓ2 (�) ; # supp v � N; v tree-structured g . N � s;

then the method reproduces this convergence rate. The above rate s can be de-
scribed in terms of the regularity of the solution u =

P
λ2 � uλ λ in a Besov scale,

the restriction to tree-structured index set only has a very little e�ect on this. In
many cases, the rate exceeds the convergence rate of standard uniform methods
and therefore justi�es the use of adaptive methods.

A di�culty in the application of these methods, however, lies in the con struction
of suitable wavelet bases. If the domain 
 is not smooth and has reentrant corners
such as in the standard example of the L-shaped domain


 := ( � 1; 1)2 n [0; 1)2;

common wavelet constructions are often very technical and may have large con-
dition numbers. An idea from [7] to circumvent this problem is to decompose the
domain into overlapping subdomains that are di�eomorphic to the unit cube. In
the case of the L-shaped domain, such a decomposition is given by


 0 := ( � 1; 0) � (� 1; 1); 
 1 := ( � 1; 1) � (� 1; 0):

On the subdomains, we can now make use of known wavelet constructions, for
which the problems occurring on the L-shaped domain can be avoided. Under
weak conditions on the decomposition, the union of the Riesz bases on the subdo-
mains gives a stable, but overcomplete generating system forH t

0(
), a so-called
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wavelet frame. Moreover, the use of such an overlapping domain decomposition
corresponds naturally to Schwarz domain decomposition methods.The basic idea
of these methods is to reduce the problem on the domain 
 to a seriesof sub-
problems on the subdomains 
i. We consider two types of such methods, the
multiplicative and the additive Schwarz method. The �rst algorithm re quires a
sequential solution of the subproblems, whereas they are independent in the latter
type of methods. For linear problems, adaptive wavelet methods applying such
techniques have been developed and analyzed in [9]. Besides from being conver-
gent and asymptotically optimal, their numerical performance has encouraged us
to generalize such methods to a range of nonlinear problems. In [4], we develop an
adaptive additive wavelet Schwarz method for a range of nonlinear problems. For
the construction of the algorithm, we adapt ideas and strategies from [3, 5]. We
show that the method is convergent and asymptotically optimal. The expected
convergence rates can also practically be observed in numerical experiments at re-
alistic scales. Ongoing research is concerned with the generalizationto a broader
range of nonlinearities and to the multiplicative Schwarz method.

Furthermore, in the second part of the talk, we outline how the principles of
the additive Schwarz method carry over to the stationary Navier-Stokes equation,

(u � r )u = �r p +
1

Re
� u + f on 
 ; div u = 0 on 
 ;

at least for small Reynolds numbers Re and with Dirichlet boundary conditions.
In [2] we sketch the construction of an additive wavelet Schwarz method for the
above equation, using the divergence-free wavelets from [8] and adapting strategies
from [6]. For this method as well, we can show convergence and optimality with
respect to the degrees of freedom.

Finally, we explain how the adaptive wavelet Schwarz methods can be combined
with Newton's method, possibly opening the prospect to cover a broader range of
nonlinear problems.
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A global view on adaptivity and sparsity in PDE discretizati on
Volker Mehrmann

(joint work with C. Carstensen, J. Gedicke, A. Miedlar, S. Quaraishi, C.
Schr•oder)

In the numerical solution of partial di�erential equations (PDEs) m odeling the
behavior of real world problems, sparsity is of major importance. Major questions
are: What is a good space of ansatz functions so that that the solution can be
sparsely represented/approximated in this space, what is a good basis/frame in
this space, or what is needed so that the �nite dimensional version has a sparse
operator or a sparse inverse and leads to a fast method? Typical approaches use
local basis functions in the �nite element method or, if something more about
the physics is known, the �nite element space is enriched as in the extended �nite
element method. One can also use wavelets, shearlets, Fourier, orspectral function
methods to sparsely represent the solution.

These questions are discussed in the context of modeling and simulation of
brake squeal in disc brakes. Break squeal is usually due to self-excited vibration
caused by a 
utter-type instability originating from friction forces at the pad-rotor
interface [1]. The analysis is based on idealized minimal models, real experiments,
and numerical simulations on uniform meshes via the �nite element models, see
e.g., [6, 11]. But, despite extensive research, fully satisfactory remedies have not
been found.

The macroscopic model equations are usually considered in the form

M (� )•u + D(� ) _u + K (� )u = f;

where M; D; K 2 Rn,n are mass, damping and sti�ness matrices respectively,
depending on a set of parameters� , and f is an external force. The function
u : R ! Rn contains the position variables associated with the degrees of free-
dom, arising from the FE modeling. In rotating machinery, the matrices D and
K are typically non-symmetric. The non-symmetry arises by incorporating phe-
nomenological models of the gyroscopic and circulatory forces andthe parameters
typically include operating conditions (temperature, pad pressure, etc) and mate-
rial conditions (friction coe�cient, brake geometry and mass distr ibution, e�ects
of wear and damping etc), as well as the rotational speed of the disc brake disc.
For self-excited vibrations it is also customary to include the excitation force in
the form of a nonsymmetric matrix which is added to the sti�ness matrix.

The vibrational modes (as functions of the parameters) are determined by sam-
pling the parameters via a set of values� j , j = 1 ; : : : ; p, and computing the right
half plane eigenvalues and associated eigenvectors of the quadratic eigenvalue prob-
lems

(� 2M (� j) + �D (� j ) + K (� j))x = 0 ; j = 1 ; : : : ; p:
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Collecting all these eigenvectors in a matrix and using a partial singular value
decomposition, one obtains a matrixU consisting of the singular vectors associ-
ated with the large singular values above a certain threshold value. There exist
a multitude of numerical methods for the numerical solution of quadratic eigen-
values problems, see e.g. [9], however, this problem is still a major computational
challenge, when the parameter vectorp varies in a large range.

Projecting the full problem by a congruence with the matrix U, the reduced
model with coe�cients

UT M (� )U; UT D(� )U + UT K (� ))U;

can then be used for optimizing the system with respect to parameter variations.
The newly developed method improves current approaches but is not very e�cient,
because it is based on a �ne uniform mesh and a large number of eigenvalue
problems have to be solved. Furthermore, although the method works well in
practice, the convergence and error analysis is rather di�cult.

To obtain better performance and error estimates, we also discuss adaptive
�nite element methods. We derive error estimates and adaptive re�nement tech-
niques for the self-adjoint subproblem and incorporate the non-symmetry via a
homotopy. The errors in the adaptation and in the homotopy are balanced to get
error estimates.

Recently the discussed work has been complemented with a backward error
analysis for the in�nite dimensional case [10], a posteriori error estimates for the
hp-�nite element methods in the non-selfadjoint case [5], as well thetreatment of
multiple real eigenvalues in the self-adjoint case [4]. However, thereare no results
for multiple complex eigenvalues or Jordan blocks.
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A Dimensional Reduction Approach Based on the Application o f
Reduced Basis Methods in the Framework of Hierarchical Mode l

Reduction
Mario Ohlberger

(joint work with Kathrin Smetana)

Many phenomena in nature have dominant spatial directions along which the es-
sential dynamics occur. Examples are blood 
ow problems, 
uid dynamics in pipes
or river beds, and subsurface 
ow. Motivated by a project on adaptive hydrologi-
cal modelling of coupled hydrological processes [2] we started to investigate a new
dimensional reduction approach [5, 7] for problems with dominant direction which
is based on the application of reduced basis (RB) techniques in the hierarchical
model reduction (HMR) framework (cf. [8] and the references therein). In detail
let 
 � R2 be a computational domain. We de�ne the solution spaceV such that
H 1

0 (
) � V � H 1(
) and consider the following general elliptic problem:

Find p 2 V : a(p; v) = f (v) 8v 2 V;

where a(�; �) is a coercive and continuous bilinear form andf a linear form.
The idea of HMR, which goes back to the work of Vogelius and Babuska[10],

is to perform a Galerkin projection onto a reduced space of rankm, i.e.

Vm =

(

vm(x; y) =
mX

k=1

vk(x) � k(y); vk(x) 2 X;

)

;

which combines the full solution spaceX in the dominant direction with a reduc-
tion spaceY := span(� 1; :::; � m) in the transverse direction. The latter is spanned
by modal orthonormal basis functions. While so far the basis functions in the
HMR approach have been chosen a priori, for instance, as Legendre or trigono-
metric polynomials, in this work a highly nonlinear approximation is employed for
the construction of the reduction space. To this end we �rst derive a lower di-
mensional parametrized problem in the transverse direction from the full problem
where the parameters re
ect the in
uence from the unknown solution in the dom-
inant direction. For the derivation of a suitable 1D PDE in transverse direction,
we �rst make the following tensor product ansatz

p(x; y) � U(x) � P (y):

Here, U(x) represents the behavior of the full solution in the dominant direction,
which is unknown at this stage. By choosing the test functions asv(x; y) =
U(x) � � (y) for any � 2 Y we obtain a parameterized reduced problem: Given any
U 2 X , �nd P 2 Y such that

a(UP; U� ) = f (U� ) 8� 2 Y:
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Exploiting the good approximation properties of RB methods, we then con-
struct a reduction space by applying a proper orthogonal decomposition to a set
of snapshots of the parametrized partial di�erential equation. For an e�cient con-
struction of the snapshot set we apply adaptive re�nement in parameter space
(cf. [4]) based on an a posteriori error estimate that is also derivedin this article.
We introduce our method for general elliptic problems such as advection-di�usion
equations in two space dimensions. Numerical experiments demonstrate a fast con-
vergence of the proposed dimensionally reduced approximation to the solution of
the full dimensional problem and the computational e�ciency of our new adaptive
approach.

In a next step, we extend the reduced basis-hierarchical model reduction frame-
work for the application to nonlinear partial di�erential equations [9 ]. The major
new ingredient to accomplish this goal is the introduction of an adaptive Empirical
Projection Method, which is an adaptive integration algorithm based on empirical
interpolation [1, 3]. In detail, let u(�; �) 2 L 2(! ) be given, e.g. as the image of
a nonlinear operator A, i.e. u(�; �) = A(v(�; �)). By M � := f u(�; �); � 2 � g we
denote a snapshot set, where �� D is a training set of sizej� j = n. The collateral
spaceWk = spanf � 1; :::; � kg with ( � i; � j)L2 (ω) = � ij is then de�ned through a
POD of the snapshot set. By projection ofu into Wk, we obtain

Pk[u](�; y ) :=
kX

l=1

Z

ω
u(�; z ) � l(z) dz � l(y)

For the usage of such a projection in our dimension reduction approach we need
a separation of variables inu(�; z ) in order to be able to precompute the integral
on ! independent of � . To achieve this goal, the adaptive EPM subdivides! into
subintervals and applies locally a generalized empirical interpolation (GEIM), i.e.

PL
k [u](�; y ) :=

kX

l=1

Z

ω
I L[u](�; z ) � l(z) dz � l(y)

with I L[u](�; z ) :=
X

I2 I

I I
kI

[u](�; z ) =
X

I2 I

kIX

j=1

� I
j (u(�; �))#I

j (z):

Here (#j
l )j is a basis of the localized spacesW I

k , and (� I
j )j a corresponding nodal

basis of the dual space, generated by the GEIM (cf. [1, 3]). Using the adaptive
EPM, we project both the variational formulation and the range of the nonlin-
ear operator onto reduced spaces. Those combine the full dimensional space in
an identi�ed dominant spatial direction and a reduction space or collateral basis
space spanned by modal orthonormal basis functions in the transverse direction.
Both the reduction and the collateral basis space are constructed in a highly non-
linear fashion by introducing a parametrized problem in the transverse direction
and associated parametrized operator evaluations, and by applying reduced ba-
sis methods to select the bases from the corresponding snapshots as in the linear
case. Rigorous a priori and a posteriori error estimators which donot require
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additional regularity of the nonlinear operator are proven for the Empirical Pro-
jection Method and then used to derive a rigorous a posteriori error estimator for
the resulting hierarchical model reduction approach. Numerical experiments for
an elliptic nonlinear di�usion equation demonstrate a fast convergence of the pro-
posed dimensionally reduced approximation to the solution of the full-dimensional
problem. Run-time experiments verify a linear scaling of the reduction method
in the number of degrees of freedom used for the computations in the dominant
direction.

Finally, we also investigate the application of our HMR-RB approach in the
presence of interfaces or strong gradients in the solution which are skewed with
respect to the coordinate axes [6]. Usually, tensor-based model reduction proce-
dures show bad convergence rates for such situations. The key ideas to recover the
good approximation properties are the detection of the interfaceand a subsequent
removal of the interface from the solution by choosing the determined interface as
the lifting function of the Dirichlet boundary conditions. For prescr ibed interfaces
we demonstrate in numerical experiments that the proposed procedure yields a sig-
ni�cantly improved convergence behavior even in the case when we only consider
an approximation of the interface.
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Solution of high-dimensional partial di�erential equatio ns using tensor
decompositions
Ivan Oseledets

High-dimensional partial di�erential equations appear in many applications: elec-
tronic structure calculations, �nancial modelling, stochastic part ial di�erential
equations, chemical master equations and many others. The main problem with
the solution of such equation is that it is not possible to represent the solution
directly in the tensor-product basis due to the underlying exponential complex-
ity. Di�erent strategies can be used, which can be summarized in three di�erent
approaches:

� (Sparsity) We �nd a basis set ' 1; : : : such that the solution can be well
approximated by a sparse linear combination of such functions.

� (Low rank) The main approximation anzatz in this strategy is the ap-
proximation of the solution in the sum-of-products (separable, canonical)
format

f (x1; : : : ; xd) �
rX

k=1

dY

s=1

f s(xs; � )

� (Composition) This idea is not yet fully understood, but is used implicitly
in many cases and may be traced back to Kolmogorov: the function isrep-
resented as a superposition of several simpler functions of fewervariables.
For example, the active subspacesapproach has the form

f (x) = g(W x);

where x 2 Rd and W is a k � d matrix, and function g depends onk
variables.

In this talk we focused on the ideas of low-rank approximation, which in two
dimension reduces to the Hilbert-Schmidt decomposition and in the discrete case
- to low-rank approximation of matrices, which can be computed using singular
value decomposition (SVD).

It is now well understood, that for d > 3 the separated representation may not
be the optimal choice due to several reasons. The computation ofthe minimal
number of summands (r ) is an NP-complete problem, and the best approximation
with �xed rank may not exist. A powerful alternative to the canonic al representa-
tion are the novel tensor formats, namely Hierarchical Tucker (H-Tucker) [3] and
Tensor Train (TT) formats [2]. The TT-format has a very simple stru cture (it
was known for many years in physics under the namematrix product states). Sup-
pose we have chosen some discretization in each of the variablesxk and obtained
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a virtual tensor A(i 1; : : : ; i d) of the coe�cients. The tensor is said to be in the
TT-format, if it can be represented as

A(i 1; : : : ; i d) = G1(i 1) : : : Gd(i d);

where Gk(i k) is a matrix of size rk� 1 � rk for each �xed i k and r0 = rd = 1. This
representation inherits many of the properties of the SVD, whereas in the worst
case the number of parameters with respect to the canonical format is O(dnr 2),
wherer is the canonical rank (however, the canonical representation can be di�cult
to compute). So if we have an apriori knowledge that the tensor can be represented
in the TT-format (or approximated well in this format) it is possible in t he robust
way to compute the approximation (for example, if we have access to the individual
elements of the tensor)

In the PDE setting the function is given explicitly as a solution of a certain
equation,

A(f ) = g;

where A(f ) is some operator. We require that this equation can be reformulated
as a minimization of a certain functional

F (f ) = min ;

and de�ne the solution as a minimizer of F over the set of all tensor of bounded
ranks. This setM r forms an embedded manifold in the space of all tensors, and we
have a non-quadratic and non-convex optimization problem (even ifthe original
functional was quadratic, as in the case of a linear operatorA).

There are several technique for the minimization of functionals over low-rank
tensor manifolds (and new ones are now in active development). Themost straight-
forward way is the idea of alternating least squares. The low-rank structure is
polylinear, so if we �x all cores except one, it gives a quadratic minimization prob-
lem which can be e�ciently solved. This is a block Gauss-Seidel method.ALS
has well-known problems: it is not adaptive in the sense that the ranks should be
chosen in advance, and it may su�er from a bad convergence. A more sophisti-
cated approaches directly use the "train" structure of the format by merging two
adjacent cores into one:

W (i k; i k+1 ) = Gk(i k)Gk+1 (i k+1 );

optimizing over it and splitting the indices again via the SVD; this is the core of
the density matrix renormalization group (DMRG) approach [5]. The problem is
that we have to work with squared mode sizes and it may not be the case. Another
approaches have been proposed as well.

A di�erent idea is to use the geometry of the manifold and to optimize in the
tangent space to the manifold; this requires a special machinery, but may lead to
the quite e�cient methods. The "best" method is yet to be found.

If the solution can be well-approximated in the TT-format, then the re are sev-
eral approaches how to �nd it e�ciently. The main problem now lies in th e selec-
tion of the parametrization in such a way that the solution can be represented as
a low-rank tensor, which is not always the case: consider a two-dimensional front
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going along the diagonalx = y. By making a variable change,z = x � y; w = x + y
we arrive at a low-rank function. The idea of active subspaces [4](linear transfor-
mation of coordinates) may be very useful in this case, but it is a special case of a
more general anzatz of composition of simpler mappings); so, the question is, can
we provide e�cient numerical tools for �nding such compositions?
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Schwarz Iterative Methods: New Developments
Peter Oswald

(joint work with Michael Griebel, Weiqi Zhou)

The name Schwarz iterative methods has been coined in the late 1980ies as a theo-
retical framework for investigating domain decomposition and multilevel methods
for PDEs. They are based on the notion of stable space splittings of�nite- and
in�nite-dimensional Hilbert spaces, and in essence represent a more constructive
version of the method of alternating projections, see [2] for details and historical
remarks. In a nutshell, a stable space splitting of a Hilbert spaceH equipped with
a coercive Hermitean forma(�; �) is given by a �nite or countably in�nite family
of Hilbert spacesH i (each equipped with its own coercive Hermitean formai(�; �))
and a family of bounded linear operatorsRi : H i ! H such that the energy norm
kuk2

a = a(u; u) and the splitting-related norm

kjukj2 = inf
ui 2 Hi : u=

P
i Ri ui

X

i

ai(ui; ui)

are equivalent onH . In�mum and supremum of the quotient a(u; u)=kjukj2 over H
are denoted by� min and � max , respectively, and their quotient � = � max =� min is
called condition number of the splitting. These constants govern the convergence
theory of iterative solvers for elliptic variational problems,

(1) �nd u 2 H such that a(u; v) = ( f; v )H 8 v 2 H;

based on the splitting. We consider only the multiplicative Schwarz iteration

(2) uj+1 = uj + ! jRiw
j
i ;

where �nding the update direction wj
i 2 H i involves solving the i -th subproblem

(3) ai(w
j
i ; vi) = a(u � uj ; Rivi) = ( f; R ivi)H � a(uj ; Rivi) 8 vi 2 H i:
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Which i = i j is chosen for the update matters, until recently only deterministic
orderings have been considered. More recently, greedy and random orderings (and
their combinations) received much attention, both due to the simplicity of their
error analysis and their sometimes much better performance.

Here is a short account of our recent contributions to the convergence analysis
of multiplicative Schwarz methods (references to the history of the subject and
related (earlier and parallel) work by other authors, especially in optimization
literature, can be found in the papers cited below). To correctly state them, we
assume uniform boundedness of the operatorsRj with respect to the involved
energy norms: Let 
 i � � < 1 for all i , where

kRiuika � 
 ikvikai 8 vi 2 H i:

� The early results [1, 2, 3] concern �nite splittings with J subproblems
(i 2 f 1; 2; : : : ; J g) and cyclic orderings i j = j (mod J ) + 1. For properly
chosen, �xed ! j = ! 2 (0; 2=�), the convergence rate per cycle of (2) is
upper-bounded by

(4) ku � uℓJk2
a � (1 � 1=(log2(4J )� )) ℓku � u0k2

a; ` � 1:

The logarithmic dependence onJ cannot be removed [1] in general. In
the special case of the Kaczmarz method for solving the least-squares
problem for linear systemsAx = b with general m � n matrix A, where
the associated subspace splitting involvesm one-dimensionalH i, W. Zhou
recently improved this bound by replacing the logarithmic dependence on
J = m by a logarithmic dependence on the rankr � min(m; n) of A, see
[5, Theorem 4].

� Greedy orderings, wherei = i j is chosen depending on the current residual,
e.g., such that


 � 1
ij

kwj
ij

kai j
� � sup

i

 � 1

i kwj
i kai

for some 0< � � 1, have been treated in [4] for �nite splittings. The
error reduction per single step in (2) with ! j = !=
 i, ! 2 (0; 2), is upper-
bounded by

(5) ku � uj+1 k2
a � (1 � � 2! (2 � ! )� min =(
 1 + : : : 
 J ))ku � ujk2

a; j � 0:

A rough comparison with (4) indicates the superiority of this bound (e.g.,
there is no dependence onJ ).

� The recent interest in investigating random orderings was triggered by a
2009 paper by Strohmer and Vershynin on the convergence of a random-
ized Kaczmarz method. In [4], the exact counterpart of (5) (with � = 1)
was established for the expected square energy norm error of a randomized
iteration (2), where in the j -th step i = i j was chosen randomly and inde-
pendently with probability � i = 
 i=(
 1 + : : : 
 J ). Even though the a priori
bounds for greedy and random orderings are identical, the numerical tests
reported in [4] show that the greedy version leads to faster convergence in
practice, and that combinations of randomization and greedy approaches
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can remedy slow convergence of the cheaper randomized (2). A comple-
mentary estimate was proved in [5, Theorem 3] for a block version of(2)
with random orderings.

� Finally, (2) can be executed also for in�nite space splittings, where it
turns from an iterative solver into an approximation algorithm for th e
solution u of (1) by �nite linear combinations of Riui. In [6], convergence
of a modi�ed version of (2) to the solution u 2 H of (1) for both greedy
and random orderings has been established, together with quantitative
convergence rates under additional assumptions foru. The greedy case
is a direct generalization of earlier work by Temlyakov et al. on greedy
algorithms in Hilbert spaces. We state the quantitative error bound for
random orderings from [6, Theorem 1 b)] which seems to be new: Let
� i > 0,

P 1
i=1 � i = 1, be an arbitrary discrete probability distribution, and

assumeu can be expanded as

u =
1X

i=1

Riui; kuikai � M� i; i = 1 ; 2; : : : ;

for some M < 1 . If in the j -th step i = i j is chosen randomly and
independently with probability � i then the modi�ed version of (2)

uj+1 =
j + 1
j + 2

uj + ! jRiw
j
i ;

where ! j is chosen such thatku � uj+1 k2
a is minimized, converges in ex-

pectation at a guaranteed rate of

(6) E(ku � ujk2
a) � 2(kuk2

a + � 2m2)( j + 1) � 1; j � 0:

Simple examples show that faster convergence cannot be expected under
these general assumptions. Further evaluation of the potentialof greedy
and randomized versions of the multiplicative Schwarz method for applica-
tions to adaptive algorithms, reduced order modeling, and regularization
theory is underway.
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Regularization and Numerical Solution of Inverse Scatteri ng Problems
using Shearlet Frames

Philipp Petersen
(joint work with Gitta Kutyniok, Volker Mehrmann)

Scattering problems are concerned with the behavior of acoustic waves, radiation,
or particles, which are transmitted in a medium and are scattered at inhomo-
geneities of this medium, so called scatterers. The associated inverse problems
aim to determine characteristics of the inhomogeneities from the asymptotic be-
havior of such scattered waves. This problem appears in various 
avors in di�er-
ent application areas, e.g. non-destructive testing, ultrasound tomography, and
echolocation.

The numerical solution of these problems usually su�ers from the ill-posedness
of the problems. Hence a regularization is necessary. For this, some a priori
knowledge of the solutions of the inverse problems shall be employed. Indeed we
will model the inhomogeneities of the medium by functions from a special function
class.

Modeling of the Scatterer: Typically, a scatterer is a natural structure, which
distinguishes itself from the surrounding medium by a change in density. In the 2D
setting, this inhomogeneity can be regarded as a curve with, presumably, certain
regularity properties. The interior as well as the exterior of this curve is usually
assumed to be homogenous.

In the area of imaging sciences, the class ofcartoon-like functions [2] is fre-
quently used as model for images governed by anisotropic structures such as edges.

A cartoon-like function is a function f 2 L 2(R2) such that there exists a domain
D � (0; 1)2 such that @Dcan be parametrized by aC2 curve and there exists
f 1; f 2 2 C2(R2) such that supp f 1 � (0; 1)2 and f = f 1 + � Df 2.

This cartoon-like model is well-suited for many inverse scattering problems,
where the discontinuity curve models the boundary of a homogeneous domain.
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Directional Representation Systems: Having agreed on a model, one needs
a suitably adapted representation system which ideally provides optimal approxi-
mation rates for cartoon-like functions in the sense of the decay of the L 2-error of
best N -term approximation. Such a system can then be used for the regularization
term of a Tikhonov functional.

In [1] shearlet systems were introduced, which almost achieve the optimal ap-
proximation rate [3]. The sparse approximation properties of shearlets were al-
ready used for di�erent inverse problems such as separation of morphologically
distinct components [4], or reconstruction from the Radon transform [7].

In view of this discussion, shearlet systems seem a good candidate as a regular-
izer for inverse scattering problems, and in fact this will be key to our approach.

Application to inverse Scattering Problems: We examine two concep-
tually di�erent approaches to numerically solve inverse scattering problems. In
particular, we study a method to directly tackle the nonlinear problem, as well
as a linearization approach. As problem cases we focus on two inverse scattering
problems, see e.g. [5], which are theacoustic inverse scattering problem,and the
inverse scattering problem of the Schr•odinger equation, for which we analyze the
strategy to linearize the inverse scattering problem by means of the so-called Born
approximation.

The acoustic inverse scattering problemaims to reconstruct a contrast func-
tion which encodes the scatterer by emitting an acoustic wave and measuring the
scattered waves.

The minimization of a suitable Tikhonov functional is a common approach to
directly solve this nonlinear inverse problem. In [6] a sparsity-basedregularization
term is introduced which uses theL p-norm with p close to 1 directly on the function
to-be-recovered. This regularization scheme is very successfulwhen the object
under consideration has small support.

Following our methodological concept, and assuming that cartoon-like functions
are an appropriate model for the scatterer, we instead choose as regularization term
the `p-norm of the associated shearlet coe�cient sequence withp larger or equal
to 1. We compare the two reconstruction approaches numerically and observe,
that the regularization based on shearlets yields superior results over the L p based
regularization for cartoon-like scatterers see Figure 1.

In the second numerical approach we �rst introduce a linearizationof an inverse
scattering problem. The inverse scattering problem of the Schr•odinger equation
aims to determine a quantum mechanical scattering potential frommeasurements
of backscattering data.

A prominent method to linearize the inverse scattering problem is by means of
the Born approximation.

Modeling the scatterer by cartoon-like functions, shearlets can be used again as
a regularizer, provided that the transition from the nonlinear towards the linear
problem does not in
uence the fact that the solution belongs to theclass of cartoon-
like functions. It has been shown in [8, 9] that certain singularities ofthe scatterer
can still be found in the solution of the associated linearized problem.However, all
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Figure 1. Left: Contrast function with overlapping discontinuity curves,
Middle: Reconstruction using the shearlet regularization, Right: L 1

Tikhonov regularization.

these results require a global regularity of the scatterer to describe the regularity
of the inverse Born approximation. On the other hand, in the case of cartoon-like
functions we have strong local but poor global regularity and therefore the results
of [8, 9] can not be applied to our situation. To provide a theoretical basis for
the application of shearlet frames, we prove that indeed the Born approximation
to the Schr•odinger equation gives rise to a scattering problem that exhibits sharp
edges in the solution of the linearized problem. In particular, we showthat the
cartoon model is almost invariant under the linearization process byproving the
following results.

Theorem 1.1. [10] Let � > 0, let s 2 N; s � 2, and let, for some x0 2 R2,
f 2 L 2(R2) \ H s+ ǫ(x0) be compactly supported and real valued. Then the inverse
Born approximation f B satis�es f B 2 H s(x0).

Corollary 1.2. [10] If f 1; f 2 2 H 3(R2), D � (0; 1)2 and

f = f 1 + � Df 2;

then the inverse Born approximation from backscattering data can be written as

f B = f δ
1 + � Df δ

2 + v1 + hδ;

where f δ
1 ; f δ

2 2 C2, v 2 C1 and hδ 2 H
1
2 � ǫ for every � > 0 and hδ is only

supported on a� neighborhood of@D.

Theorem 1.1 and Corollary 1.2 describe the regularity of the inverse Born ap-
proximation from backscattering data, such that common approaches using spar-
sity in the shearlet representation can be applied.
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Recent Developments in Entropy Viscosity
Bojan Popov

(joint work with Jean-Luc Guermond, Murtazo Nazarov, and Yong Yang)

We consider the case of a scalar conservation law

ut + r � f (u) = 0

with initial condition u(x; 0) = u0(x) in the domain (x; t) 2 
 � R+ . The initial
data u0 is assumed to be bounded and the 
uxf is assumed to be Lipschitz
continuous. We also assume that the boundary conditions are either periodic or
the initial data is compactly supported. In the second case we are interested in
the solution in a time interval [0; T] such that the domain of in
uence o f u0 over
[0; T ] does not reach the boundary of 
. The purpose of these assumptions is to
avoid unnecessary technical di�culties induces by boundary conditions. Following
the seminal work of Kruskov [8], it is now well understood that this problem has
a unique entropy solution.

Maximum principle, entropy stability and convergence of viscosity approxima-
tions for scalar conservation laws have been established a long time ago. However,
on discrete level the same questions sometimes are a lot harder andmany results
were proven on uniform/restricted meshes and only for �rst order schemes, see [9].
In this talk, we present two recent results in the case of scalar nonlinear conser-
vation laws. First, we will derive a maximum principle preserving secondorder
scheme based on entropy viscosity. The new method preserves maximum principle
on a large variety of �nite element spaces general unstructured meshes in arbi-
trary space dimensions, see [6] for all results. This is a joint work with Jean-Luc
Guermond, Murtazo Nazarov, and Yong Yang. Second, we will present a general
convergence framework for numerical methods for approximating scalar nonlinear
conservation laws. Our approach is similar to the one of Bouchut andPerthame in
[1] but we relax their arguments using techniques inspired by [3, 4]. Asan appli-
cation of this framework, we will give a convergence proof of a �niteelement based



New Discretization Methods for the Numerical Approximation of PDEs 153

numerical method with graph viscosity as a stabilization. This result is valid for a
large variety of �nite element spaces on general unstructured meshes in arbitrary
space dimensions. The main result is as follows.

Theorem. [Guermond and P.] Let f be Lipschitz continuous, u0 2 BV (
) and
~uh be the numerical solution generated by the graph viscosity stabilization. Then,
under a standard CFL condition (see [7] for details) we have the following conver-
gence result. If we have a BV bound onuh(�; t), we have

ku(�; T ) � uh(�; T )kL1 (
) � c(T )h1/2ju0jBV (
)

Otherwise, we have

ku(�; T ) � uh(�; T )kL1 � c(T )h1/4ju0j �

where ju0j2� := ju0jBV (
) j
 j(ju0j2L2 (
) � j �u0j2L2 (
) ).

Note that, the the BV bound is well known in one space dimension but inthe
multidimensional case it is not know if it holds. Therefore, the general convergence
result is with a rate of 1

4 which is similar to the estimates in the �nite volume setup,
see for example [2, 5]. This is a joint work with Jean-Luc Guermond, see [7] for a
complete description of the method and full details.
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Quarkonial frames and their connection to high-order schem es
Thorsten Raasch

(joint work with Stephan Dahlke, Peter Oswald)

We are concerned with quarkonial or subatomic decompositions of function spaces,
as introduced by Triebel in [11, 12], and their connection to popular high-order
ansatz systems, like conformingp- or hp-�nite element frames. The design of
quarkonial systems on a given domain 
 � Rn merges spectral and multiscale
approximation strategies, e.g., by locally enriching a given hierarchy of partitions
of unity with polynomial or trigonometric frames [6, 11]. Similar approaches are
well-known from the context of partition of unity methods [1, 5] and their multi-
level variants [9], as well as from the theory of fusion frames [2]. So far, the concept
of quarkonial decompositions has only rarely been exploited in numerical appli-
cations. We hope that the stability and approximation properties of quarkonial
systems might be helpful, e.g., in the convergence analysis of adaptive hp-FEM
and in solving preconditioning issues, similar to the impact of stable subspace
splitting approaches [7] on the development of hierarchical preconditioners.

In the univariate, shift-invariant case, one may consider translated, dilated and
locally enriched cardinal B-splines' := Nm(� + bm=2c) of order m, e.g.,

(1) ' p,j,k(x) := ' p(2jx � k); ' p(x) := gp(x)' (x); p; j � 0; k 2 Z;

where the enrichment functionsgp are globally or piecewise polynomial of degree
p. We refer to Figure 1 for an example of monomial B-spline quarks. Similar to the
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Figure 1. B-spline quarks ' p with m = 2 and gp(x) = xp, p � 0.

case of multilevel �nite element systems [7], one can show [6, 11] thatappropriately
weighted quarkonial systems � := f wp,j,k ' p,j,k : p; j � 0; k 2 Zg can be a frame
for positive-order Sobolev and Besov spacesB s

q := B s
q (L q(
)), where s; q > 0, i.e.,

the span of � is dense in B s
q and we have with frame constantsc1; c2 > 0

(2) c1kf kq
Bs

q
� inf

c> �= f

X

p,j,k

jcp,j,k jq � c2kf kq
Bs

q
; f 2 B s

q :

The proof of (2) typically relies on approximation and regularity prop erties of

(3) Vj,p := spanf ' µ,ν,k : 0 � � � p;0 � � � j; k 2 Zg; p; j � 0:

In the original work [11], (2) was shown via Fourier techniques, assuming a C1

partition generator ' and weightswp,j,k with exponential decay in p. An inspection



New Discretization Methods for the Numerical Approximation of PDEs 155

of the proof from the viewpoint of stable subspace splittings [7] reveals that these
assumptions can be relaxed considerably. The necessary approximation properties
of Vj,p can be ensured by direct estimates of Jackson type. Moreover, the weights
wp,j,k only have to overcompensate the asymptotic behavior ofkvkBs

q
=kvkLq , v 2

Vj,p, as j; p ! 1 , which can be measured by Bernstein inequalities like

(4) kvkBs
q

� CBp,s2jskvkLq ; v 2 Vj,p:

In the case of partition generators ' of spline type and polynomial enrichment,
the constants Bp,s scale like (1 + p)2s, as p ! 1 , which is essentially due to the
Markov inequality.. Based on these observations, we showed in [6] that p-algebraic
decaywp,j,k � (1 + p)β2� js, � 2 R, is su�cient to verify the frame property of �
in B s

q , with positive impact on the numerical conditioning of �nite subsets of �.
Moreover, we would like to point to the close link between B-spline quarks and

the Babu�ska-Shen basis [8] which is widely used inp-�nite element methods,

(5) ' 0(x) =
x + 1

2
; ' 1(x) =

1 � x
2

; ' p(x) =

r

p �
1
2

Z x

� 1
lp� 1(y) dy; p � 2:

Here lp are the L 2-normalized Legendre polynomials on (� 1; 1), see also Figure 2.
The set of interior shape functions (\bubble functions") f ' pgp� 2 is an H 1

0 (� 1; 1)-
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Figure 2. Babu�ska-Shen basis functions' p on (� 1; 1).

orthonormal basis. Theouter shape functions' 0 and ' 1 can be used to extend the
bubble functions to a Riesz basis ofH 1(� 1; 1) where exactly one basis function
is nonzero at each of the endpoints� 1. Therefore, by glueing together' 0 and
' 1(� � 2) to the hat function ' := N2( �+1

2 ) on (� 1; 3), the system
�

' p(� � 2k) : p � 2; k 2 Z
	

[
�

' (� � 2k) : k 2 Z
	

is a Riesz basis forH 1(R). We have the factorization ' p(x) = gp(x)' (x) with
continuous splinesgp, gpj(2k� 1,2k+1) 2 Pp� 1, p � 2. In other words, the Babu�ska-
Shen system is indeed of quarkonial type, with enrichment byC0 spline functions.

A natural question arises whether quarkonial frames can be madestable in L q
or even in negative-order Sobolev or Besov spaces. Similar to the case of wavelet
systems [3], frame elements can be endowed by vanishing moment properties. In
the univariate, shift-invariant case (1), one may take a wavelet mask f bkgk2 Z � R
with m discrete vanishing moments and de�ne thequarklets

(6)  p(x) :=
X

k2 Z

bk' p(2x � k); p � 0;
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which then have m vanishing moments as well, regardless ofp. We refer to Figure
3 for an example of linear, monomial B-spline quarklets based on the wavelet mask
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Figure 3. Monomial B-spline quarklets for the CDF(2,2) wavelet mask.

from [4] with two vanishing moments. Thanks to the vanishing momentproperty,
an appropriately weighted system

f wp,k ' p(� � k) : p � 0; k 2 Zg [ f wp,j,k p(2j � � k) : p; j � 0; k 2 Zg

is indeed a frame forL q(R), where 1 < q < 1 and the weights wp,k and wp,j,k
decay algebraically inp.

Current research focuses on the compressibility of di�erential and integral oper-
ators in quarklet coordinates, in the spirit of [10], aiming at the designof adaptive
discretization schemes for operator equations with guaranteed exponential conver-
gence.
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Hierarchical tensor representations and tensor networks
Reinhold Schneider

We consider tensor techniques for the numerical solution of high dimensional
PDEs. Examples are Schr•odinger, Fokker Planck and boundary value problems
with uncertain parameters, which, by Wiener Ito chaos polynomials isturned into
a parametric PDE setting. We highlight the second quantization for the fermonic
multi-particle Schr•odinger in a (discrete) Fock space setting.

Although several statements are valid in the in�nite-dimensional setting, we
often consider a �xed discretization of the operator equations. Let V1; : : : ; Vd
Hilbert spaces, orVi = L 2(R) or V0 = H 1

0 (D ). When we invoke a discretization
Vi = Rni . An order-d tensor over these spaces is then given by anyU 2 
 d

i=1 Vi:
Let us interpret such tensors as multivariate functions

U : I 1 � � � � � I d ! R; x = ( x1; : : : ; xd) 7! U(x1; : : : ; xd);

with index sets I i to be either discrete, e.g. I i = f 1; : : : ; nig in case that Vi =
Rni , or continuous, e.g. I i = R in the case that, for instance, Vi = L 2(R).
Such tensors play an important role in the description of many complex systems.
At the latest after a discretization, tensor quantities take on nd di�erent values
(x1; : : : ; xd), assumingn = max f ni; i = 1 ; : : : ; dg. The complexity O(nd) grows at
least exponential in d, known as the curse of dimensionality. Even ifn is small.
e.g. n = 2, for large d, e.gd = 300 it is impossible to handle the full tensor. Tensor
product approximation aims to approximate these tensors by sum of products of
univariate functions. Such a multi-linear representation may reduce the number
of parameters, from nd to O(nd) with a constant depending on the number of
terms in the sum. This seems to be appealing, nevertheless there are fundamental
problems with this rather simple and canonical idea. The parametrization of the
canonical form is no longer linear and does also destroy an original convexity of the
problem. Instead of acurse of dimensionsthere appears acurse of non-linearity
or curse of non-convexity.

The Hierarchical Tucker tensor format (HT) (Hackbusch-K•uhn) and Tensor
Trains (TT) (Tyrtyshnikov-Oseledets), introduced recently o�ering stable and ro-
bust approximation by a low order cost, see [3]. The representationof these
tensors can be described bytensor networkswith tree structure, already known in
quantum physics. We would like to demonstrate that with this approach we can
overcome most of the obstructions mentioned above.

We consider mainly TT tensors, known as matrix product states in physics,
as a prototype example. The appearing component tensors are oflow order, e.g.
for binary trees they are of order 3, independent of the original order d. For
example, the TT format provides a special case of hierarchical tensor formats. Here
U(x1; : : : ; xd) is represented in terms ofd component matricesU1(x1); U2(x2); : : : ;
Ud(xd). A value of U at point ( x1; : : : ; xd) can be computed by

U(x1; : : : ; xd) = U1(x1)U2(x2) � � � Ud(xd) ;
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or explicitly

=
r1X

k1 =1

: : :
rd � 1X

kd � 1 =1

U1(x1; k1)U2(k1; x2; k2) : : : Ud� 1(kd� 2; xd� 1; kd� 1)Ud(kd� 1; xd):

The numbers r i, de�ne the rank numbers of the TT decomposition or the rank
vector r = ( r1; : : : ; rd� 1) that mainly governs the complexity of the representation.
Letting r = max r i, storage of the TT decomposition is O(r 2nd) and is thus
formally free from the curse of dimensionality.

The important observation is that the hierarchical tensors inherit major prop-
erties from low rank factorization of matrices. In other words oneapplies matrix
analysis to treat the tensor case. Given a partition tree, then theoptimal ranks
are de�ned by the rank of the correspondingmatricisation or matrix unfolding A t,
see [3]. This observations holds for most operators, can be assumed for right hand
sides. Even more operation like Summation, application of operatorsto tensors
can be performed in this format. We are looking for those solutions which can be
approximated su�ciently accurate in the present form.

The set of tensors of prescribed rank is neither a linear space nor convex. It has
been shown, partly by the author [7], that given a tree, the set hierarchical tensor of
optimal rank forms smooth (open) manifoldsM r. For numerical computations, we
cast the computation of an approximate solution into an optimization problems
constraint to this manifold. In particular, for approximation by elem ents from
this highly nonlinear manifold , we apply the well known Dirac Frenkel variational
principle, see e.g [5],

_U(t) = argmin fk V � (�A + B)	( t) + f (t)k : V 2 TU g :

By straightforward manipulations, this provides the equations of motion in weak
form,

h_U + ( A � B )	 � f; V i ; 8V 2 TU ; U(0) = 	 0 2 M r :

In [6], we have analysed the (open) manifold of such tensors and its projection onto
the tangent spaceTU at point U(t) 2 M r . First convergence estimates inL 2 has
been derived, providing quasi-optimal converge local in time, i.e. for0 � t � T , T
su�ciently small. The Dirac Frenkel principle is a Galerkin approximation , where
the di�erential equation has to be satis�ed in weak form on the tangent spaceTU
at each time U(t). The Lojasiewich inequality allows to prove convergence of the
Riemannian gradient iteration [9] to stationary points, only.

Therefore there remains still a curse of non-convexity. Iǹ 2(I ) a quasi-optimal
approximation can be found from the singular value decomposition ofthese ma-
trices, the HSVD, originally derived by Vidal, and afterwards independently by
Oseledets and Grasedyck, see e.g. [3, 4]. This can be used to construct (adaptive)
iterative methods by hard (Dahmen & Bachmayr) and soft thresholding opera-
tions [1]. These methods are shown to converge to the exact solution still retaining
quasi-optimal approximations bounds.

However the analysis of the these bounds is still fairly open. BestN -term
approximation results has been derived from this observation in a recent paper
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[8]. Let A t = U T � V ; (SV D) � = diag( � i) be the singular value decomposition
of the unfolding at a node t in the tree. For 0 < p � 2, we refer to the the nuclear

norm p = 1 and Schatten class quasi-normskA tk� ,p :=
� P

i � p
t,i

� 1
p : Assuming that

kA k� ,p := max t kA tk� ,p < 1 , and jr j := max f r tg. Then, by Stechkins lemma it
follow that the best rank r t, for s := 1

p � 1
2 , best N-term approximation by rank r

can be estimated by

inf
f V :ranks of V � rg

kU � V k2 . C(d)jr j � skA k� ,p

with a prefactor C(d) .
p

d ; scaling mildly with d. Notice that the complexity
scales]U . djr j3 (HT), ( . ndjr j2 (TT)). It has been shown [8] that mixed Sobolev
spacesare embedded in these classes. Perhaps, due to the complexity scaling
O(r 3), these results are only suboptimal for these classes.

A comparison of di�erent formats is summarized in the following table

canonical Tucker HT

complexity O(ndr ) O(r d + ndr ) O(ndr + dr3)
TT- O(ndr 2)

++ { +
rank no de�ned de�ned

r c � rT rT � rHT � r c
(weak) closedness no yes yes

ALS (1site DMRG) yes - but slow yes yes
H (O) SVD no yes yes

embedded manifold no yes yes
Dirac Frenkel no yes yes

algebraic var. M � r no yes yes
recovery ?? yes yes

quasi best approx. no yes yes
best approx. no exist exist

but NP hard but NP hard
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High Order, Quasi Monte-Carlo Petrov-Galerkin Discretiza tion for
countably-parametric operator equations

Christoph Schwab
(joint work with J. Dick, F.Y. Kuo, T. LeGia, I.H. Sloan)

We construct quasi-Monte Carlo methods to approximate the expected values of
linear functionals of Petrov-Galerkin discretizations of parametric operator equa-
tions which depend on a possibly in�nite sequence of parameters.

Such problems arise among others in the numerical solution and in computa-
tional uncertainty quanti�cation for di�erential and integral equ ations with so-
called \distributed random input data" (random �eld inputs) cp. eg. [1, 2,
3]. A�ne-parametric, in�nite-dimensional deterministic operator e quations re-
sult from uncertainty parametrization by, eg., Karhunen-Loeve expansion of the
random input data. We analyze the regularity of the corresponding paramet-
ric solutions with respect to the parameters in terms of the rate of decay of
the 
uctuations of the input �eld. Based on analytic continuation or on a real-
variable, \bootstrapping" argument, we show in [8] that if p 2 (0; 1] denotes the
\summability exponent" corresponding to the 
uctuations in a�ne- parametric
families of operators, then deterministic \interlaced polynomial latt ice rules" of
order � = b1=pc + 1 in s dimensions with N points can be constructed using a
fast component-by-component algorithm, in O(� s N logN + � 2 s2N ) operations,
to achieve a convergence rate ofO(N � 1/p), with the implied constant indepen-
dent of s. This dimension-independent convergence rate is superior to the rate
O(N � 1/p+1 /2) for the range 2=3 � p � 1, with implied constants that are inde-
pendent of the dimensions, recently established in [12] for randomly shifted lattice
quadrature rules under analogous assumptions. The Quasi Monte-Carlo quadra-
ture error analysis in [6, 4, 8] is developed for a�ne-parametric operator equations
with bounded parameter domains. Extensions to holomorphic-parametric opera-
tors are in [6], with regularity results from [5]. Partial extensions of the theory
for �rst order Quasi Monte-Carlo quadratures to elliptic PDEs with log-gaussian
random inputs are provided in [10].

Multi-Level versions of the presented algorithms were �rst analyzed in the a�ne-
parametric, uniform case for �rst order lattice rules in [11] where it was shown
the judicious combination of mesh-dependent Quasi Monte-Carlo quadratures can
provide substantial gains in complexity, subject to suitable regularity.
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The Quasi Monte-Carlo quadrature error analysis is based on a novel, non-
standard Banach space setting for the error analysis of Quasi Monte-Carlo pro-
posed recently in [14] and on \smoothness-driven product and order dependent
(SPOD)" weights proposed for higher order Quasi Monte-Carlo integration in [8].

A new, so-called fast CBC construction (quadratically scaling in the dimensions
of the integration domain) proposed in [8] shows that the asymptotic error bounds
are attained already for moderate dimensionss ' 10; :::; 1000, and for as few as
N = O(102) lattice points.

The implementation of the �nite �eld algorithms in [9] for the fast Comp onent-
by-Component construction of the generating vectors, based on original ideas of
[13] of the lattice rule is shown to exhibit the asymptotic complexity bounds al-
ready from dimensions = 10 upwards.

Detailed numerical experiments in [9] show, in a number of countably-parametric
model elliptic PDE integration problems, the predicted, dimension-independent
convergence rateO(N � 1/p) where the exponent 1=p depends only on the sparsity
parameter p 2 (0; 1] of the distributed, parametric input.

Work of CS supported by ERC AdG 247277.
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Discontinuous Galerkin �nite element approximation of
Hamilton{Jacobi{Bellman equations with Cordes coe�cient s

Iain Smears
(joint work with Endre S•uli)

We propose a novel approach to the numerical analysis of fully nonlinear second-
order elliptic and parabolic Hamilton{Jacobi{Bellman (HJB) partial di�e rential
equations. For example, consider the Dirichlet boundary value problem

(1)
sup
α2 �

[L αu � f α] = 0 in 
 ;

u = 0 on @
 ;

where 
 is a convex domain in Rd, d � 2, � is a compact metric space, and the
nondivergence form elliptic operatorsL α, � 2 �, are de�ned by

(2) L αv = aα : D 2v + bα � r v � cα v:

These equations arise from models for the optimal control of stochastic pro-
cesses. Stochastic control problems encompass a diverse set ofapplications from
engineering, economics and �nance, including examples such as industrial pro-
duction planning, option pricing, and portfolio investment. The stud y of HJB
equations thus continues to be an active research area.

Furthermore, HJB equations constitute an important example of fully nonlinear
second-order elliptic equations. The theory of viscosity solutions provides a general
solution theory for this family of equations, and its relevance to HJBequations was
among the main motivations for developing the theory [3, 8, 9]. Recallthat the
regularity theory centered around the celebrated Evans{Krylov Theorem estab-
lishes interior C2,β-regularity of the viscosity solution of fully nonlinear uniformly
elliptic equations with convex nonlinearities [1, 4, 7]; this applies to (1) provided
that the di�usion coe�cients aα satisfy the usual uniform ellipticity condition.

We summarise here the contributions of our papers [11, 12, 13, 14]on hp-version
discontinuous Galerkin �nite element methods (DGFEM) for uniformly elliptic and
uniformly parabolic HJB equations with Cordes coe�cients. In order to focus the



New Discretization Methods for the Numerical Approximation of PDEs 163

discussion, we concentrate on elliptic HJB equations of the form (1), although we
note that we have extended our method and analysis to parabolic equations in [14].

The Cordes condition is an algebraic assumption on the coe�cients ofthe equa-
tion, and it encompasses a large range of possibly strongly anisotropic applications.
The Cordes condition requires that there exist a� > 0 and an" 2 (0; 1] such that,
for each � 2 �,

(3)
jaαj2 + jbαj2=2� + ( cα=� )2

(Tr aα + cα=� )2 �
1

d + "
in 
 ;

where j�j represents the Euclidian norm for vectors and the Frobenius normfor
matrices.

The motivation for applying the Cordes condition to HJB equations stems from
the literature on nondivergence form PDEs, for which it is well-knownthat uniform
ellipticity alone is generally not su�cient to guarantee well-posedness[2, 5, 10] in
more than two dimensions. Moreover, it is also known that HJB equations are
naturally related to nondivergence form PDE through the fact that linearisations
of HJB operators are in nondivergence form.

Although the PDE (1) does not admit a weak formulation, it does admit an
equivalent formulation as a variational problem A(u; v) = 0 for all v 2 H 2(
) \
H 1

0 (
), with A a nonlinear form de�ned by

(4) A(u; v) :=
Z



Fγ [u] L λv dx; L λv := � v � � v;

where Fγ is a renormalisation of the nonlinear operator of (1). The Cordes con-
dition leads to a key stability result in the form of a strong monotonicity bound:

(5) ku � vk2
H2 (
) . A(u; u � v) � A(v; u � v) 8 u; v 2 H 2(
) \ H 1

0 (
) :

This enables the application the Browder{Minty theorem to show existence and
uniquness of a solutionu 2 H 2(
) \ H 1

0 (
) of (1).
In [13], we construct a discrete analogueAh of the nonlinear form A, leading

to the numerical scheme of �nding uh 2 Vh,p such that Ah(uh; vh) = 0 for all
vh 2 Vh,p , where Vh,p is the DG �nite element space. The method isconsistent
in the usual sense of Galerkin type methods. The main challenge however is to
achievestability through a discrete analogue of the strong monotonicity bound (5).
This is achieved by relating the residual of the equation to terms measuring the
lack of H 2-conformity of the numerical solution.

The stability and consistency properties enable the derivation of error bounds.
In the special case of quasi-uniform meshes of sizeh and quasi-uniform polynomial
degreesp, provided that u 2 H s(
; Th), s > 5=2, the error bound is of the form

(6) ku � uhkh .
hmin( p+1 ,s) � 2

ps� 5/2
kukHs (
) :

where the norm k�kh is the broken H 2-norm. Importantly, these bounds do not
depend on the anisotropy of the problem, except through the constants appearing
in the Cordes condition. Therefore, our method is able to exploit anyavailable
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regularity of the solution and yield high-order accuracy for strongly anisotropic
problems, as shown by our numerical experiments in [13]. Ifhp-re�nement is
employed, it is even possible to achieve exponential convergence rates of the form
ku � uhkh ' exp(� c 3

p
DoF), where DoF is the number of degrees of freedom, even

for rough solutions with singularities in parts of the domain.
In practical terms, the implementation and algorithmic aspects of the method,

such as memory costs, are the same as those of usual DGFEM for elliptic problems.
In [11, 13], it is shown that a combination of a semismooth Newton method and
nonoverlapping domain decomposition preconditioners allows the fast and e�cient
solution of the discrete nonlinear problem.

References
[1] L. A. Caffarelli and X. Cabré, Fully nonlinear elliptic equations , Amer. Math. Soc.

Providence, RI, 1995.
[2] H. O. Cordes, •Uber die erste Randwertaufgabe bei quasilinearen Di�erent ialgleichungen

zweiter Ordnung in mehr als zwei Variablen , Math. Ann., 131 (1956), pp. 278{312.
[3] M. G. Crandall, H. Ishii, and P.-L. Lions, User's guide to viscosity solutions of second-

order partial di�erential equations , Bull. Amer. Math. Soc. (N.S.), 27 (1992), pp. 1{67.
[4] L. C. Evans, Classical solutions of the Hamilton{Jacobi{Bellman equat ion for uniformly

elliptic operators , Trans. Amer. Math. Soc., 275 (2008), pp. 245{255.
[5] D. Gilbarg and N. S. Trudinger, Elliptic partial di�erential equations of second order ,

Class. Math., Springer-Verlag, Berlin, 2001. Reprint of th e 1998 edition.
[6] M. Jensen and I. Smears, On the convergence of �nite element methods for Hamilton{

Jacobi{Bellman equations , SIAM Journal on Numerical Analysis, 51 (2013), pp. 137{162 .
[7] N. V. Krylov, Boundedly inhomogeneous elliptic and parabolic equations , Izv. Akad. Nauk

SSSR Ser. Mat., 46 (1982), pp. 487{523, 670.
[8] P.-L. Lions, Optimal control of di�usion processes and Hamilton-Jacobi -Bellman equations.

I. The dynamic programming principle and applications , Commun. Part. Di�. Eq., 8 (1983),
pp. 1101{1174.

[9] , Optimal control of di�usion processes and Hamilton-Jacobi -Bellman equations. II.
Viscosity solutions and uniqueness , Commun. Part. Di�. Eq., 8 (1983), pp. 1229{1276.

[10] A. Maugeri, D. K. Palagachev, and L. G. Softova, Elliptic and parabolic equations with
discontinuous coe�cients , Math. Res., Wiley-VCH Verlag Berlin GmbH, Berlin, 2000.

[11] I. Smears, Nonoverlapping domain decomposition preconditioners for discontinuous
Galerkin �nite element methods in H 2-type norms , ArXiv e-prints, (2014).
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A perturbation-method-based post-processing of planewav e
approximations of nonlinear Schr•odinger equations

Benjamin Stamm
(joint work with Eric Canc�es, Genevi�eve Dusson, Yvon Maday, M artin Vohral��k)

In this talk, the Gross-Pitaevskii equation serves as a toy problemfor methods
arising from the Density-Functional-Theory (DFT). Indeed, the f ollowing theory
can be generalized to some planewave approximations of DFT-models. We use
this simpler problem to illustrate the technical key-arguments of the theory which
are identical to those for the DFT Kohn-Sham LDA-models. We note also that
the Gross-Pitaevskii equation plays also an important role in the simulation of
particle-systems consisting of Bosons.

We consider the minimization problem

inf
n

E(v)
�
�
� v 2 H 1

# (
) ; kvkL2 = 1
o

;

where the energy functional is given by

E(v) =
Z




h
jr vj2 + V v2 + 1

4 v4
i
;

for some real-valued potentialV 2 H s
# (
), s > d=2. Then, there exists a unique

real-valued positive minimizer u 2 H 2
# (
). The Euler-Lagrange equations are then

given by: �nd � 2 R, u 2 H 1
# (
) such that kukL2 = 1 and

(1) � � u + V u + u3 = �u; in 
 :

We consider the ground state so that� denotes the lowest eigenvalue of the mean-
�eld operator Hu = � � + V + u2 and plays the role of the Lagrange multiplier
associated to the constraintkvkL2 = 1. Let us denote by X N the space spanned
by planewaves up to a certain wavenumberjkj < N and � N : H s

# (
) ! X N

the orthogonal projection onto X N . The planewave approximation to (1) is then
given: �nd � N 2 R, uN 2 X N such that kuNkL2 = 1 and

(2) � � uN + � N
�
V + juN j2

�
uN = � N uN ; in 
 :

Again, � N is the lowest eigenvalue of the discrete HamiltonianHN = � �+� N
�
V +

juN j2
�
� N .

In this talk, we presented the key-arguments of a post-processing upon uN
de�ned by

(3) ~uN := uN � (� � � � N )� 1rN ;

where rN is the residual de�ned by

rN := � � uN + V uN + juN j2uN � � N uN 2 X ?
N :

The second term of the right-hand side of (3) denotes the leading term of the �rst
order correction of an underlying perturbation argument. Indeed, we consider the
exact solution (�; u ) as a perturbation of the discrete planewave approximation
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(� N ; uN ) and apply Kato's perturbation theory in order to show that the Ra yleigh-
Schr•odinger series in the perturbed system

�
HN + � (Hu � HN )

�� X

j

� ju(j)
N

�
=

� X

j

� j � (j)
N

�� X

j

� ju(j)
N

�
;

converge for� = 1 if N is su�ciently large.
From a practical viewpoint, we observe that rN 2 X ?

N so that we need to
compute the residual in a larger spaceX Nres . The most expensive part in terms
of operations is to computeV uN + juN j2uN which requires applying twice a Fast
Fourier Transform (FFT) on a larger grid based on X Nres . Finally we presented
the main theorem.

Theorem. [1] There exists a positive real constantC, independent ofN and
s, such that for all N su�ciently large, there holds

ku � ~uN kH1
#

� CN � 2ku � uNkH1
#

+ Cku � uN kH � 1
#

:

In combination with a priori results developed in [2] we obtain that

ku � ~uN kH1
#

� CN � (s+3) ;

in the asymptotic limit. We ended the presentation by showing some numerical
example in the case of DFT Kohn-Sham LDA-models showing an decrease in the
error already from a pre-asymptotic stage on.
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From Perfect Derivatives to Conservative Di�erences
Eitan Tadmor

Entropy stability plays an important role in the dynamics of nonlinear s ystems
of conservation laws and related convection-di�usion equations. What about the
corresponding numerical framework? we present a general theory of entropy sta-
bility for di�erence approximations of such nonlinear equations. We demonstrate
this approach with a host of �rst- and second-order accurate schemes ranging from
scalar examples to Euler and Navier-Stokes equations and we conclude with recent
computations of entropy measure valued solutions based on the class of arbitrarily
high-order accurate and entropy stable TeCNO schemes.

Entropy-conservative and entropy-stable schemes. We consider semi-dis-
crete conservative schemes of the form

(1)
d
dt

uν (t) = �
1

� xν

h
fν+ 1

2
� fν� 1

2

i
;
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serving as consistent approximations to systems of conservationlaws ut + f (u)x =
0. Here,uν(t) denotes the discrete solution along the grid line (xν ; t) with � xν :=
1
2 (xν+1 � xν� 1) being the variable meshsize, andfν+ 1

2
being the Lipschitz-continuous

numerical 
ux consistent with the di�erential 
ux, fν+ 1
2

= f (uν� p+1 ; : : : ; uν+ p).
The numerical 
ux, f (�; �; : : : ; �), involves a stencil of 2p neighboring grid values.

We are concerned here with the question ofentropy stability of such schemes.
Let ( �; F ) be an entropy pair associated with the systemut + f (u)x = 0. We
ask whether the scheme (1) isentropy-stable with respect to such a pair, in

the sense of satisfying a discrete entropyinequality
d
dt

� (uν (t)) +
1

� xν

h
Fν+ 1

2
�

Fν� 1
2

i
� 0, analogous to the entropy inequality� (u)t + F (u)x � 0. Here,Fν+ 1

2
=

F (uν� p+1 ; : : : ; uν+ p) is a consistent numerical entropy 
ux, F (u; u; : : : ; u) = F (u).
In the particular case that equality holds, we say that the scheme (1) is entropy-
conservative.

The answer to this question of entropy stability provided in [7] consists of two
main ingredients: (i) the use of the entropy variables and (ii) the comparison with
appropriate entropy-conservative schemes. We conclude this section with a brief
overview. De�ne the entropy variables v := � 0(u) $ u. Making the changes of
variables uν = u(vν ), the scheme (1) recasts into the equivalent form

(2)
d
dt

uν(t) = �
1

� xν

h
fν+ 1

2
� fν� 1

2

i
; uν(t) = u(vν (t)) ;

with a numerical 
ux fν+ 1
2

= f (vν� p+1 ; : : : ; vν+ p) := f (u(vν� p+1 ); : : : ; u(vν+ p)),
consistent with the di�erential 
ux, f (u(v)). We ask whether (2) is entropy con-
servative, that is | given an entropy � , �nd a numerical 
ux f �

ν+ 1
2

such that

d
dt

uν(t) +
f �
ν+ 1

2
� f �

ν� 1
2

� x
= 0 ?=)

d
dt

� (uν (t)) +
Fν+ 1

2
� Fν� 1

2

� x
= 0 :

In other words, we are looking for a recipe of entropy conservative 
uxes f �
ν+ 1

2

such that


� 0(uν ) ; f �

ν+ 1
2

� f �
ν� 1

2

� ?�! Fν+ 1
2

� Fν� 1
2
, which in turn would imply

the entropy conservation
P

ν � (uν (t))� x =
P

ν � (uν (0))� x. Expressed in terms
of the entropy variables, the entropy conservation requirement



� 0(uν) ; f �

ν+ 1
2

�

f �
ν� 1

2

�
= Fν+ 1

2
� Fν� 1

2
, reads

perfect di�erence
z }| {

vν ; f �

ν+ 1
2

� f �
ν� 1

2

�
if and only if

perfect di�erence
z }| {

vν+1 � vν ; f �

ν+ 1
2

�
:

and we conclude thatf �
ν+ 1

2
is entropy conservative if

D
vν+1 � vν ; f �

ν+ 1
2

E
=  (vν+1 )�

 (vν ), where  (v) is the entropy 
ux potential,  (v ) :=


v ; f (v )

�
� F (u(v)). This

brings us to the following.
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Theorem 1.1 (Tadmor, 1987 [7]). The conservative scheme (2) is entropy-stable ifD
� vν+ 1

2
; fν+ 1

2

E
� �  ν+ 1

2
, and entropy-conservative if

D
� vν+ 1

2
; f �

ν+ 1
2

E
= �  ν+ 1

2
.

Scalar examples. We begin by noting that in the scalar case,� 0(u)f (u)x =( : : :)x
| all convex � 's are entropy functions, and the corresponding entropy conservative


uxes are given by f �
ν+ 1

2
=

 (vν+1 ) �  (vν )
vν+1 � vν

.

Example 2 (Burgers' equation). Consider the inviscid Burgers' equation ut +

( 1
2 u2)x = 0 augmented with the quadratic entropy (

1
2

u2)t + (
1
3

u3)x = 0. The

entropy variable v(u) = u and entropy potential  (v) := vf � F = 1
6 u3 yield the

entropy conservative 
ux which is the \ 1
3 -rule"

d
dt

uν(t)= �
2
3

�
u2

ν+1 � u2
ν� 1

4� x

�
�

1
3

�
uν

uν+1 � uν� 1

2� x

�
 

X
u2

ν(t)� x = Const:

The point we make here, is that the same derivation applies to any scalar
conservation law and any convex entropy. Consider thelinear case f (u) = u
with the quartic entropy � (u) = u4=4. Here, v = u3 and  (u) = 3

4 u4 yield the

second-order conservative 
uxu�
ν+ 1

2
=

�  
� u

=
3
4

u4
ν+1 � u4

ν

u3
ν+1 � u3

ν
. Observe that this is

a second-order accurate di�erenceu�
ν+ 1

2
� uν+ 1

2
such that both

P
(u�

ν+ 1
2

� u�
ν� 1

2
)

and
P

u3
ν(u�

ν+ 1
2

� u�
ν� 1

2
) are conserved.

Systems of conservation laws. Our study of entropy stability is based on com-
parison with entropy-conservative schemes. In the scalar case,entropy-conservative
schemes are unique (for a given entropy pair). For systems, there are various
choices for numerical 
uxes which meet the entropy conservationrequirement in
theorem 1.2. In this section we present the general framework developed in [8].
We present a family of entropy-conservative schemes which enjoys an explicit,
closed-form formulation. To this end, at each cell consisting of two neighbouring
values vν and vν+1 , we let

�
r j

ν+ 1
2

	 N
j=1 be an arbitrary set of N linearly inde-

pendent N -vectors, and let
�

` j
ν+ 1

2

	 N
j=1 denote the corresponding orthogonal set,



` j

ν+ 1
2
; r k

ν+ 1
2

�
= � jk. Next, we introduce the intermediate states,

�
v j

ν+ 1
2

	 N
j=1

, start-

ing with v1
ν+ 1

2
= vν , and followed by v j+1

ν+ 1
2

= v j
ν+ 1

2
+

D
` j

ν+ 1
2
; � vν+ 1

2

E
r j

ν+ 1
2
; j =

1; 2; : : : ; N , thus de�ning a path in phase space, connectingvν to vν+1 ,

(3) vN+1
ν+ 1

2
= v1

ν+ 1
2

+
NX

j=1

D
` j

ν+ 1
2
; � vν+ 1

2

E
r j

ν+ 1
2

= vν + � vν+ 1
2

� vν+1 :



New Discretization Methods for the Numerical Approximation of PDEs 169

Since the mappingu 7! v is one-to-one, the path is mirrored in the usual phase
space of conservative variables,

�
uj

ν+ 1
2

:= u
�
v j

ν+ 1
2

�	 N+1
j=1 , starting with u1

ν+ 1
2

= uν

and ending with uN+1
ν+ 1

2
= uν+1 .

Theorem 1.2 (Tadmor , 2003 [8]). Fix an entropy pair (�; F ) and let  denote
the corresponding entropy 
ux potential  (v ) := hv; f (v )i � F (u(v)) . Then the
numerical 
ux, f �

ν+ 1
2
, given by

(4) f �
ν+ 1

2
:=

NX

j=1

 
�
v j+1

ν+ 1
2

�
�  

�
v j

ν+ 1
2

�



` j

ν+ 1
2
; � vν+ 1

2

� ` j
ν+ 1

2
;

is an � -entropy conservative such that
d
dt

� (uν (t)) +
1

� xν

h
Fν+ 1

2
� Fν� 1

2

i
= 0 .

We demonstrate our approach in the context of Euler equations. We begin with
the entropy decay in the Navier-Stokes equations

@
@t

2

4
�
m
E

3

5 +
@

@x

2

4
m

qm + p
q(E + p)

3

5 = ( � + 2 � )
@2

@x2

2

4
0
q

q2=2

3

5 + �
@2

@x2

2

4
0
0
�

3

5

The viscosity and heat dissipation of the right dictate an entropy dissipation

η(u � )
z }| {
(� �S )t +

F� (u � )
z }| {
(� �qS + � ln( � )x)x =

viscosity
z }| {

� (� + 2 � )
(qx)2

�

heat conductionz }| {

� �
j� xj2

� 2 � 0

We now seek the entropy conservative 
ux, f �
ν+ 1

2
which produces noarti�cial

numerical viscosity; namely, we should end with the precise entropy balance1,

d
dt

� (uν ) +
Fν+ 1

2
� Fν� 1

2

� x
=

8
<

:

0; Euler eq's,

� �
h� � q

� x

� 2� 1
�

�
+

� � �
� x

� 2 g� 1
�

� 2i
� 0; NS eq's.

An entropy conservative 
ux for Euler equations was computed in [9]. The
entropy variables associated with� (u) = � �S are � u (u) = [ � E=e � S + 
 + 1 ;
q=�; � 1=� ]> ; the corresponding entropy 
ux potential amounts to  (v ) = hv ; f i �
F (u) = ( 
 � 1)m. We choose a path in phase-space along the eigensystem of
the Jacobian | an approximate Riemann path. We end up with the entr opy

conservative 
ux, given in an explicit form f �
ν+ 1

2
= ( 
 � 1)

3X

j=1

mj+1 � mj

h̀ j ; � vν+ 1
2
i
` j .

No arti�cial numerical viscosity is present.

Higher-order extensions | the class of TeCNO schemes. In [2] we in-
troduced the classarbitrarily high-order entropy-stable schemes | the TeCNO

1The notations f�g and f̃�g denote proper average values.
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schemes. This was achieved by coupling entropy-conservative 
uxes coupled with
high-order di�usion based on ENO reconstruction of cell-interfaces v �

ν+ 1
2
. The re-

sulting class ofarbitrarily high-order entropy-stable 
uxes take the form fν+ 1
2

:=

f � (v )ν+ 1
2

�
1
2

Dν+ 1
2
hhv ii ν+ 1

2
where hhv ii ν+ 1

2
:= v �

ν+1 � v+
ν is the jump across the

cell interface. The ENO reconstruction has an importantsign property hhv ii ν+ 1
2

�
� vν+ 1

2
(!) which was judiciously used in [2] to tune the entropy stability of any

order. These schemes were used in recent computations ofentropy measure valued
solutions of 2D Euler equations [3]. The point we make here is that these failthful
computations require high-resolution without arti�cial numerical v iscosity. This is
precisely what the TeCNO schemes provide. They enable us to explore the ques-
tion of what computed quantities are encoded inunstable2D Euler computations.
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A fast-marching method for non-monotonically evolving fro nts
Alexandra Tcheng

(joint work with Jean-Christophe Nave)

The following treats the development of a new algorithm tracking non-monotonical-
ly evolving fronts using �nite-di�erences. This is the subject of my P hD thesis,
supervised by Prof. Dr. Jean-Christophe Nave.

Front propagation is a time-dependent phenomenon occurring when the boundary
between two distinct regions of space is evolving. It is possible to make the dis-
tinction between monotone and non-monotone motion of fronts. For example, a
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�re evolves monotonically in that, if a point x of space belongs to a burnt region,
then it cannot belong to an unburnt region at a later time [1]. Given an initial
front C0 as a codimension-oneC1 subset ofRn, let each point of the front evolve
with a given speedF : Rn � [0; T ] ! R in the direction of the outward normal
to the front �̂ t : Ct ! Rn. The resulting non-linear evolution is such that even if
F and C0 are smooth, the front may becomeC0 and undergo topological changes
[2]. Numerical algorithms tracking interface propagation aim to recover the front
Ct at later times t > 0.

On the one hand, a robust but computationally expensive numericalmethod
for tracking either kind of evolution is the Level-Set Method (LSM) [1]. On the
other hand, the Fast Marching Method (FMM) [3, 4] may be used when F (x) �
� > 0, and is therefore suited for monotone propagation. This approach builds
the �rst arrival time function  , i.e., t =  (x) gives the unique time at which
the front reaches the point x 2 Rn. The FMM �nds  by marching the front at
a computational speed that isoptimal. The purpose of the work described below
was to develop an algorithm able to handle speed functions changing sign while
featuring a computational complexity comparable to that of the FM M.

In [5] and [6], we consider the setM := f (x; t) : x 2 Ctg consisting of the surface
traced out by the fronts as they evolve. If M embeds in Rn � (0; T ) as a Ck-
manifold of dimension n, then each point (x; t) 2 M belongs to a neighbourhood
that is locally the image of a Ck-function of n variables. We describeM locally
with functions of the form  (u) where the n variables u = ( u1(x; t); : : : ; un(x; t))
parameterisesome hyperplanelying in Rn � [0; T ]. We show that  : Rn ! R
solves a Dirichlet problem of the form:

�
H (u;  (u); r  (u)) = 0 in U � Rn

 (u(x; t)) = un+1 (x; t) on x 2 Ct \ V
(1)

for appropriate neighbourhoodsU and V, where un+1 is normal to the plane. As
with the FMM, points sampling M �rst belong to the narrow band set N before
they are moved to the acceptedset A . However the points p 2 M are no longer
required to lie on any grid. Rather, when the point pa 2 N with the smallest time
value is accepted, the algorithm works in theu-un+1 -coordinate system to �nd a
new point belonging to M . To this end, the relation H (u;  (u); r  (u)) = 0 is
discretized using �nite-di�erences. Then, given a location uc and another point
pb 2 M , we may solve for (un+1 )c using either a direct or an iterative solver. To
determine the coordinatesuc, a constrained optimisation problem is solved. The
objective function f captures the accuracy of the solvers, whereas the constraints
ensure that both causality is enforced into the solution, and the sampling ofM
is even. The �nal output is a discrete sampling of the manifold M . Figure 1 (a)
& (b) features one such set, where it is visible that the sampling ofM is highly
regular. First order convergence is observed; see Figure 1 (c).

If my talk, I will elaborate on the non-linear optimisation problem lying a t the
heart of this algorithm and present more results.
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Figure 1. (a) & (b) In this example, F = 1 � 2t, and C0 consists
of a circle. (c) Convergence results for the example illustrated on
(a) & (b) (global truncation error).
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Adaptive Wavelet BEM
Manuela Utzinger

(joint work with Helmut Harbrecht)

Introduction

We consider the adaptive wavelet boundary element method for thesolution of
boundary integral equations in three dimensions. Partial di�erential equations are
frequently encountered in science and engineering, some of which can be formu-
lated as boundary integral equations. Apart from reducing the dimensionality of
the problem, this is also a way to handle the in�nite expansion of the domain in
case of an exterior problem. Some situations (e.g. domains with edges and vertices)
require a strong re�nement in certain parts of the geometry. Where uniform re�ne-
ment would lead to huge systems, an adaptive approach saves a large amount of
computation power and memory. Even though the dimensionality of the problem
is reduced drastically, the involved linear system of equations is densely populated.
By applying the wavelet compression [4, 6], we end up with a quasi-sparse system
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matrix. This means that the matrix is not sparse per se, but many matrix entries
can be neglected without compromising the accuracy. Thus, aftercompression,
only O(N ) relevant matrix entries remain.

Exterior Dirichlet Problem for the Helmholtz Equation

Acoustic scattering at a three dimensional object 
 � R3 can be described by the
exterior Helmholtz equation

� U + � 2U = 0 in 
 ext := R3 n �
 ;

with k = 2 �=� being the wavenumber and� the wavelength, describing the oscil-
lation of the incoming and the scattered wave. Depending on the characteristics
of the scatterer, the boundary conditions are chosen appropriately. Additionally,
in order to be a solution to the Helmholtz equation, the function U must ful�ll
the Sommerfeld radiation condition, ensuring the uniqueness of thesolution U.
We reformulate the problem by using the fundamental solution

E(x; y) =
1

4�
eiκkx� yk

kx � yk

for x and y in R3. With the acoustic single layer and the acoustic double layer
potential

(Su)(x) =
Z

�
E(x; y) u(y) d� y and (Du)(x) =

Z

�

@E(x; y)
@ny

u(y) d� y

we end up with the boundary integral equation
�

D +
1
2

I
�

u = f

for Dirichlet problems. If � 2 is an eigenvalue of the interior Neumann problem,
then the solution is not unique anymore. Brakhage and Werner [1] thus came up
with the ansatz U = ( D � i� S)u, leading us to the boundary integral equation

Lu =
�

1
2

+ D � i� S
�

u = f on �

with � > 0.
After introducing the variational formulation and the Galerkin proj ection, we ar-
rive at a linear system of equations to solve. Depending on how we choose the basis
functions in our ansatz space, the resulting structure of matrix di�ers. Namely, if
we choose a wavelet basis, many matrix entries can be neglected without compro-
mising the accuracy. This is because the wavelets are supposed to have vanishing
moments of a certain orderm, meaning that

Z

�
xα  j,k(x) dx = 0 for j� j < m:



174 Oberwolfach Report 2/2015

This property, together with the asymptotic smoothness of the kernel, implies the
following estimate for the matrix entries

jhL k;  ii L2 (�) j � C
diam(supp  i)m+1 diam(supp  k)m+1

dist(supp  i; supp  k)2+2 q+2 m :

From this estimate, we see that wavelets having a large distance from each other
result in a small matrix entry. To make the compression even more e�cient, we
use a second compression, having an e�ect on the other wavelets as well.

Adaptive Wavelet Schemes

With adaptivity, there comes a whole new theory [3, 5]. Without going too much
into detail, we just want to mention one estimate and to introduce the basic idea of
what our goal is. Let u 2 `2(J ) (with respect to some index setJ ), uN 2 `2(J ) its
best N -term approximation and 	 an H t(�)-normalized wavelet basis. Obviously,
there holds that u := 	 u. For u 2 H t+2 s(�), where s � �s := 1� t

2 , there holds the
estimate ku � uN k � CN � s. Now, if u 2 B t+2 s

τ (�) with � = ( s + 1 =2)� 1, then

ku � uN k � CN � s

with B t+2 s
τ (�) being a Besov space.

In order to get an adaptive data structure for the adaptive code, we use wavelet
and element trees instead of arrays. To preserve the tree structure of the wavelet
basis, we use the bestN -term tree approximation which is nearly as good as
the pure N -term approximation. Our aim is to �nd the approximate solution in
optimal computational complexity O(N ).
The adaptive algorithm works in the steps:

solve ! estimate ! mark ! re�ne :

Starting with a small set of wavelets, we solve the linear system of equations.
With this and an estimated residuum at hand, we start an iteration where our
goal is to add the required new wavelets. In each step of the iteration, we coarse
the developed index set by a �xed percentage. After the set of wavelets has
been increased in this growth process, we solve the newly formed linear system of
equations. With this newly developed algorithm, we are able to re�ne 15 times or
more where it is necessary, which would be unthinkable (in terms of memory) for
a uniform scheme.

Numerical examples

To conclude, we present a numerical result. On the Fichera vertexwe solve the
exterior Helmholtz problem with the Brakhage-Werner formulation. We use piece-
wise constant wavelets with three vanishing moments and the Dirichlet data is
chosen as the functiong(x) = E(x; a) with a = (0 :55; 0:55; 0:55) and � = 1 for the
wavenumber.



New Discretization Methods for the Numerical Approximation of PDEs 175

10
2

10
4

10
6

10
� 4

10
� 3

10
� 2

10
� 1

10
0

Number of unknowns

A
b

so
lu

te
 e

rr
o

r

Brakhage� Werner formulation on the Fichera vertex

Residuum
Potential

N� 0.5

The left �gure shows us the density on the geometry, whereas in the �gure on the
right side we see the norm of the evaluated potential and the residual error versus
the unknown, showing the expected rate of convergence.
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hp -Discontinuous Galerkin Time Stepping Discretizations
Thomas P. Wihler

The discontinuous Galerkin (dG) time stepping scheme has been investigated in
various works (see, e.g., [1, 9]), and studied within thehp-context in, e.g., [6, 7,
8]. Due to its great 
exibility with respect to the local time steps and t o the
approximation orders, the hp-version dG scheme is well-known to be capable of
resolving both local singularities as well as areas of smooth behaviorat high-order
algebraic or even exponential convergence rates.

hp-Setting. In order to de�ne the dG scheme, let us consider time nodes 0 =
t0 < t 1 < : : : < t M � 1 < t M = T on an interval [0; T ], T > 0, which intro-
duce a time partition into local intervals I m = ( tm� 1; tm) of (possibly varying)
length km = tm � tm� 1, m = 1 ; 2; : : : M . Furthermore, to each time interval I m,
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we associate a polynomial degreerm � 0, and collect these quantities in a vec-
tor r = f r1; r2; : : : ; rM g. Based on this setup, let us de�ne, for s 2 N0, the
polynomial space

Ps(J ; H ) =

(

v 2 C0(J ; H ) : v(t) =
sX

j=0

aj tj ; aj 2 H

)

on an interval J � R, with values in a real Hilbert spaceH (with inner product
denoted by (:; :)H , and norm k:kH). Moreover, for p 2 [1; 1 ] and u 2 L p(J ; H ),
we de�ne the Bochner norms kukLp (J ;H) = (

R
J ku(t)kp

H dt)
1
p for p 2 [1; 1 ),

and kukL1 (J ;H) = ess supt2 Jku(t)kH for p = 1 .

The dG Derivative Operator [3]. On a time interval I m de�ne the dG time
derivative operator � rm

m : Prm (I m; H ) ! Prm (I m; H ) by
Z

Im

(� rm
m (U); V )H dt =

Z

Im

(U0; V )H dt + ( U+
m� 1; V +

m� 1)H 8V 2 Prm (I m; H ):

Here, we introduce the right-sided limit of a piecewise continuous function U at
each time nodetm� 1 by U+

m� 1 = lim s#0 U(tm� 1 + s), m = 1 ; : : : ; M .
For the analysis of the dG time discretization scheme it is important to note

that the operator � rm
m : Prm (I m; H ) ! Prm (I m; H ) is an isomorphism, and that,

for any p 2 [1; 1 ], there exists a constant 0< C χ � 2 independent ofkm and rm
such that

k[� rm
m ]� 1(u)kL1 (Im ;H) � Cχk

1� 1
p

m kukLp (Im ;H) 8u 2 Prm (I m; H ):

In particular, the operator [ � rm
m ]� 1 is unconditionally stable with respect to the

polynomial degreerm.

Application to Nonlinear Initial Value Problems [3]. For T > 0 consider
a nonlinear continuous operator F : (0; T) � H ! H . Then, for a given initial
value u0 2 H , we consider the nonlinear initial value problem

u0(t) = F (t; u(t)) ; t 2 [0; T ]; u(0) = u0;

for an unknown solution u : (0; t) ! H .
In order to discretize this problem, we introduce �nite dimensional subspaces

Hm � H , dim(Hm) < 1 , on each time interval I m, m = 1 ; : : : ; M . Then, using the
dG derivative operator, the m-th time step of the dG time discretization scheme
can be formulated as follows: Given an initial value

u�
dG,m� 1 := udGjIm � 1 (tm� 1) (with u�

dG,0 := u0);

�nd udGjIm 2 Prm (I m; Hm) such that

Z

Im

(� rm
m (udG � � mu�

dG,m� 1); v)H dt =
Z

Im

(F (udG); v)H dt;
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for any v 2 Prm (I m; Hm), where � m : H ! Hm signi�es the H -orthogonal pro-
jection. Then, employing the L 2-projection � rm

m : L 2(I m; H ) ! Prm (I m; Hm), we
obtain the strong form of the dG method:

� rm
m (udG � � mu�

dG,m� 1) = � rm
m (F (udG)) in Prm (I m; Hm):

Thence, introducing the auxiliary variable ZdG := udG � � mu�
dG,m� 1, and de�ning

the (continuous) operator TdG
m : Prm (I m; Hm) ! Prm (I m; Hm) by

TdG
m (Z ) := [ � rm

m ]� 1
�

� rm
m (F (Z + � mu�

dG,m� 1))
�

;

yields the �xed point formulation TdG
m (ZdG) = ZdG. This formulation allows the

application of Brouwer's �xed point theorem, which implies that, if the local time
step km > 0 is chosen su�ciently small ( independently of the polynomial de-
gree rm), then the hp-dG time stepping method possesses at least one solution
in Prm (I m; Hm); see [3] for a detailed analysis.

Application to Linear Parabolic Problems [2]. Given two separable Hilbert
spacesX ,! H with dense embedding, we consider a linear elliptic operatorA :
X ! X ⋆ that is associated with a bounded, coercive bilinear forma : X � X ! R,

a(u; v) = hAu; vi X? � X 8u; v 2 X:

Here,X ⋆ signi�es the dual space ofX , and h�; �i X? � X is the duality pairing in X ⋆ �
X . Then, we focus on the parabolic evolution problem inX ⋆:

u0(t) + Au(t) = g(t); t 2 (0; T); u(0) = u0;

with given data u0 2 H , and g 2 L 2((0; T); X ⋆).
To discretize the above problem, we introduce conforming discretespacesX m �

X , Ym = Prm (I m; X m), on each time interval I m, m = 1 ; 2; : : : ; M . Then, the
(fully discrete) dG time stepping method can be written as follows: For each
m = 1 ; 2; : : : ; M �nd UdGjIm 2 Ym such that

Z

Im

n
(� rm

m (UdG � � mU �
dG,m� 1); V )H + a(UdG; V )

o
dt =

Z

Im

hg; Vi X? � X dt

for all V 2 Ym, with � m : X ! X m being the X -orthogonal projection from X
to X m, and U �

dG,0 := bu0 2 X m some projection ofu0 2 H .
In order to derive a strong formulation of the above dG scheme, we�rst de�ne

the time reconstruction of UdG by

bUdG(t) = U �
dG,m� 1 +

Z t

tm � 1

� rm
m (UdG) d�; t 2 I m;

cp., e.g., [5]. Incidentally, there holds bUdG(t) 2 H 1(0; T ; X ), and the di�er-
ence bUdG � UdG(t) can be bound explicitly in terms of the discontinuity jump
of UdG(t) at tm� 1; see [8]. In addition, to deal with the elliptic part of the discrete
formulation, we de�ne the discrete operator Am : X m ! X m by

v 2 X m : (Amv; � )H = hAv; � i X? � X 8� 2 X m:
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Then, we use anelliptic reconstruction approach [4] to �nd eU such that

U 2 Ym : hA eU; wi X? � X = ( AmU; w)H 8w 2 X:

The di�erence eUdG � UdG(t) can be bounded by means of a suitablea posteriori
error estimate for elliptic problems.

Based on these reconstructions, we infer the strong form of thedG method,

bU0
dG + A eUdG = � ⋆

mg; on I m;

where � ⋆ is the orthogonal projection from X ⋆ to X m. In a subsequent step,
estimating the di�erences between the dG solutionUdG and its reconstructions,
L 2(0; T ; X )- and L 1 (0; T ; H )-type a posteriori error estimates can be derived;
see [2] for details.
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The approximation of wavefunctions by anisotropic Gauss fu nctions
Harry Yserentant

(joint work with Stephan Scholz)

The approximation of high-dimensional problems whether they be given explic-
itly or implicitly as solutions of di�erential equations, represents one of the grand
challenges of applied mathematics. This �eld made great progress during the past
years, mainly due to the emergence of modern tensor product methods. The as-
tonishing e�ciency of such methods for the numerical solution of certain partial
di�erential equations and their obviously often rapid convergencecan meanwhile
be explained theoretically. Adaptive techniques have been developed that enable
to exploit this convergence behavior in practical computations. One of the most
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notorious and complicated problems of this type, the electronic Schr•odinger equa-
tion, however largely resists such approaches. The Schr•odingerequation forms the
basis of quantum mechanics and is of fundamental importance for our understand-
ing of atoms and molecules. It links chemistry to physics and describes a system of
electrons and nuclei that interact by Coulomb attraction and repulsion forces. As
proposed by Born and Oppenheimer in the nascency of quantum mechanics, the
slower motion of the nuclei is mostly separated from that of the electrons. This
results in the electronic Schr•odinger equation, the problem to �nd the eigenvalues
and eigenfunctions of the electronic Hamilton operator

(1) H = �
NX

i=1

� i �
NX

i=1

KX

ν=1

Zν

jxi � aν j
+

X

i<j

1
jxi � xj j

:

It acts on functions with arguments x1; : : : ; xN in R3, which are associated with
the positions of the considered electrons. Thea1; : : : ; aK in R3 are the �xed posi-
tions of the nuclei and the valuesZν > 0 the charges of the nuclei in multiples of
the electron charge. The reason for the comparatively low performance of tensor
product methods when applied to the electronic Schr•odinger equation is that such
methods �x a set of directions. It is not possible with tensor product methods to
capture simultaneously and equally well the singularities arising from the interac-
tion of the electrons and the nuclei aligned with the coordinate directions and the
electron-electron singularities aligned with the diagonals.

Therefore we propose a di�erent nonlinear ansatz that is invariant to rotations
of the coordinate system and is inspired by the almost exclusive use of Gauss
functions in quantum chemistry, that is partly motivated by the fac t that the
arising integrals can be evaluated without problems but has also to dowith the
good approximation properties of Gauss functions. We propose toapproximate
the electronic wavefunctions by linear combinations of anisotropic Gauss functions

exp
�

�
1
2

(x � a) � Q(x � a)
�

:

The symmetric positive de�nite matrices Q are arbitrary and are not �xed in
advance. The same holds for the pointsa 2 R3N around which the Gauss functions
are centered and which are only indirectly determined by the positions of the
nuclei. Basically we show that electronic wavefunctions can be approximated with
arbitrary order by linear combinations of such Gauss functions.

The key to our approximation of the wavefunctions is the extremelyaccurate
approximation of the functions 1=

p
r and 1=r by exponential functions and with

that indirectly also that of 1 =r by Gauss functions. Approximations of this kind
form a rather universal tool that received much attention during the past years,
due to the work of Braess and Hackbusch and others. Our central idea is to
approximate and replace the Coulomb potentials in the operator (1)and the inverse
of the correspondingly shifted Laplace operator, expressed in terms of the Fourier
transform, by series of Gauss functions. The eigenvalue problem is�rst rewritten
as a linear equation with the convolution f = K � u of the eigenfunction u under



180 Oberwolfach Report 2/2015

consideration with a Gaussian kernelK of su�ciently small width as right hand
side. The corresponding approximate equation is then solved via a Neumann series.
The crucial point is that this series is, after reordering and expansion of the right
hand side into a series of Gauss functions, itself a series of Gauss functions that is
then truncated in an appropriate manner. The main hurdle, to which most of our
work is devoted, is the control of this truncation process.

Our main result is easily sketched. Assume that there exists a sequence of scalar
multiples g1; g2; : : : of Gauss functions such that for every" > 0






 f �

nX

j=1

gj








ϑ
� "; n �

� �
"

� 1/r
;

where r is a given approximation order and the norm anL 2-like fractional order
Sobolev norm with a regularity index # a bit greater than one. Expansions of this
type can be constructed using that the Fourier transform of an electronic wave-
function for an eigenvalue below the ionization threshold is real-analytic and its
partial derivatives of arbitrary order are bounded. The solution of the approxi-
mate equation, that serves as a quasi-exact substitute of the original wavefunction,
can then, for arbitrarily small " > 0, be approximated by a linear combination of

n � 2
� 2�

"

� 1/r

Gauss functions up to anH 1-error " , provided the width of the smoothing ker-
nel K is su�ciently small in dependence of the approximation order r aimed for.
The approximation of the original, singular wavefunction up to a very small, com-
pletely negligible residual error determined by the approximations ofthe Coulomb
potentials and the inverse of the shifted Laplace operator requires therefore only
insigni�cantly more e�ort than that of its smoothed variant.

Reporter: Philipp Petersen
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