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Introduction:

The classical Langlands program
The Langlands program emerged as an organizational principle in the

theory of automorphic forms. Classically, automorphic forms are functions on
symmetric domains G/K where G is a real Lie group and K ⊂ G a maximal
compact subgroup, which are required to be invariant under the action of an
arithmetic subgroup Γ ⊂ G. The prototypical example is the case of SL2(Z)
acting on the upper half-space, giving rise to modular forms and Maaßforms.
On the space of automorphic forms, one has a large space of symmetries,
classically given by differential operators, and Hecke operators. This big
space of operators on automorphic forms allows one to extract spectral data.
One of the Langlands conjectures predicts that this same spectral data is
also seen in (apparently unrelated) arithmetic situations. The prototypical
example is the relation between rational modular forms of weight 2 and
elliptic curves E over Q, which relates Hecke eigenvalues with the number of
Fp-rational points of E.

In the modern formulation, one starts with a reductive group G over Q,
and one regards Q as the function field of the “compact curve” SpecZ =
SpecZ∪ {∞}. For each place v of this curve, i.e. v is either a prime number
p or the archimedean place ∞, one has the completion Qv of Q at v, which
are either the p-adic numbers, or the reals R. One can also form the adèles
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A of Q, which is the subring of
∏

v Qv given by the condition that almost all
components are integral.

An automorphic representation of G is (roughly) an irreducible repre-
sentation of G(A) that occurs in the space of L2-functions on G(Q)\G(A).
Any irreducible representation π of G(A) decomposes as a (restricted) tensor
product

π =
⊗
v

πv

of irreducible representations πv of G(Qv). The rough statement of the local
Langlands conjecture says that for each v, the datum of πv is equivalent to a
representation of the absolute Galois group of Qv, with values in the Lang-
lands dual group.1 The rough statement of the global Langlands conjecture
is that if π is automorphic, then there is a representation of the absolute
Galois group of Q, inducing all these representations of the local absolute
Galois groups. Moreover, one should be able to go in the converse direction.

A completely parallel conjecture can be formulated for the function field
F of a projective smooth curve over a finite field, in place of Q. Several
simplifications occur in this case, the most important being that the space
G(F )\G(AF ) is 0-dimensional, so most analytic aspects of the problem are
gone. Notably, many of Langlands’ conjectures have been proved in this case
by Drinfeld, L. Lafforgue and V. Lafforgue.

The (global, unramified) geometric Langlands program
The geometric Langlands program emerged as a geometric way of looking

at Langlands’ conjectures in the case of a function field. It is most directly
related to the classical picture when looking at the global, everywhere un-
ramified correspondence.

Let C be a smooth projective curve over any field k, and let us continue
to denote by F its function field. For any closed point x of C, we write
Ox for the completion of the structure sheaf at x, and Fx for its quotient
field. Let AF = (

∏
x Ox) ⊗ F be the adèles. If k is a finite field, then

everywhere unramified automorphic representations correspond to functions
on the double quotient

G(F )\G(AF )/G(
∏
x

Ox) .

1At least at v = ∞, one has to use the Weil group of R; also, there are issues about
L-packets etc., ...
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The basic observation is that if BunG denotes the stack of G-bundles on C,
then there is a bijection

BunG(k) = G(F )\G(AF )/G(
∏
x

Ox) .

If k is a finite field, then functions on BunG(k) can be geometrized by perverse
sheaves on BunG: Any perverse sheaf gives a function on k-points by looking
at traces of Frobenius on the stalks. The analogue of the Hecke action is
given by the action of Hecke correspondences on the stack of G-bundles.

Looking at the other side of the correspondence, everywhere unramified
Galois representations are precisely local systems on C (with values in the
L-group LG of G). Thus, the geometric Langlands conjecture predicts that
for every LG-local system E on C, there is a perverse sheaf AutE on BunG

which satisfies a suitable Hecke equivariance property. For G = GLn, it has
been proved by Frenkel, Gaitsgory and Vilonen, following earlier work of
Drinfeld, and Laumon.

If k is a finite field, this conjecture implies the global unramified classical
Langlands conjecture by passing to the corresponding function on BunG(k).

However, when trying to generalize to ramified representations, it is very
difficult to see the arithmetic of supercuspidal representations of G(Fp((t))),
and its relation with irreducible Galois representations of the absolute Ga-
lois group of Fp((t)) in this picture. The basic reason is that the geometric
picture is automatically compatible with extensions of the base field k = Fp,
whereas these arithmetic phenomena are not.

Fargues’ conjecture
At his MSRI lecture in December 2014, Fargues stated a most strik-

ing conjecture. Recall that in recent work with Fontaine, for any non-
archimedean local field E (i.e., E is a finite extension of Fp((t)) or Qp), he
had constructed a certain scheme XE over E, which behaves like a smooth
projective curve over an algebraically closed field, but is not of finite type.
This construction was motivated by considerations in p-adic Hodge theory.

Fargues’ observation was that if one interprets the global unramified geo-
metric Langlands conjecture on this curve, one ends up with a statement that
encodes most conjectural properties of the local ramified arithmetic Lang-
lands conjecture over E. One critical difference is that the automorphism
group of the trivial G-torsor is not the algebraic group G, but the locally
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profinite group G(E), so (perverse) sheaves on the stack of G-bundles natu-
rally give rise to representations of G(E). One can hope that this makes it
possible to adapt methods from the geometric Langlands program to make
progress on the local Langlands conjectures, even over p-adic fields.

The goal of this workshop will be to recall the geometric Langlands con-
jecture (in the “punctual case”) and sketch the proof for GL(2), and to
formulate Fargues’ conjecture.

Talks:

Day 1:

1. Adic spaces Give a brief introduction to theory of adic spaces, concen-
trating on the case of adic spaces over some complete nonarchimedean
base field. Moreover, recall the relation to rigid-analytic spaces. Ref-
erence: e.g. [12, Section 2] and the references mentioned there.

2. Geometric class field theory

The unramified version:

(a) State the theorem as follows: pullback along X → Pic(X) defines
a bijection between character local systems on Pic(X) and 1-dim local
systems on X.

(b) Prove decent by Deligne’s trick using the fact that the fibers of
X(d) → Picd for d ≫ 0 are simply connected.

The passage from geometric to classical: Explain why in the
abelian case the geometric theory is equivalent to the classical one,
using Lang’s isogeny.

The ramified version:

(a) Explain that if we imitate Deligne’s construction, one is led to a
geometric formulation of local CFT.

(b) State the local CFT.

(c) Explain the connection with Lubin-Tate.

(d) Deduce the global ramified CFT.

Reference: [8].
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3. The Fargues-Fontaine curveDefine the Fargues-Fontaine curveXE =
XF,E, first as an adic space, and then as a scheme. In the equal char-
acteristic case, emphasize the equation

XF,E = “ (SpaE/φ)× SpaF ′′ .

State its basic properties: It is a regular noetherian scheme of dimension
1, with all residue fields algebraically closed. Reference: [5], [4].

4. Perfectoid spaces Define perfectoid rings and perfectoid spaces. Ref-
erence: [12, Sections 5,6], or [13, Lectures 6,7].

Day 2:

5. The pro-étale and faithful topology Discuss the pro-étale and
faithful topologies on perfectoid spaces, in particular that they are
subcanonical, and that one can glue vector bundles. Reference: [13,
Lectures 8,9].

6. Statement of Galois ⇒ Automorphic in the geometric context

The classical case: Explain the statement of Galois to automorphic
at the level of functions, and the“faisceaux-fonctions” process.

Geometric Satake:

(a) Give the statement (as monoidal categories).

(b) Describe the commutativity constraint as coming from fusion.

(c) Outline the proof.

Statement of global (pointwise) geometric Langlands:

(a) Notion of Hecke eigen-sheaf (naive version).

(b) The correct notion of Hecke eigen-sheaf (with multiple points).

(c) State the existence conjecture.

References: [9, 11, 6, 7].

7. Vector bundles on the Fargues-Fontaine curve State the classifi-
cation result for vector bundles on the Fargues-Fontaine curve. More-
over, explain the relationship with p-divisible groups, as in [14, Section
5.1, Corollary 6.3.10]. Reference: [5].
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8. Banach-Colmez spaces The global sections of vector bundles on the
Fargues-Fontaine curve are not finite-dimensional in the usual sense,
but they are finite-dimensional Banach Spaces in the sense of Colmez.
Recall these spaces, and their relation to p-divisible groups. Use this
to describe the automorphism groups of vector bundles on the Fargues-
Fontaine curve.

Day 3:

9. The relative Fargues-Fontaine curve Define the relative Fargues-
Fontaine curve XS,E over a perfectoid space S of characteristic p, and
discuss the (non-existent) map π : XS,E → S, and the relation of
sections of π with untilts of S. Reference: [4], [13, Lecture 11].

10. Beauville-Laszlo uniformization We will follow Drinfeld-Simpson.

Existence of B-structures:

(a) State the theorem on the existence of B-structures, étale locally on
the space of parameters.

(b) Give a proof by reducing to the case of P1.

Triviality of the bundle when restricted to the punctured
curve:

(a) State the theorem that the G-bundle on a complete curve becomes
trivial when restricted to the punctured curve, fppf locally with respect
to the scheme of parameters (comment on when “fppf” can be replaced
by “étale”).

(b) Prove by reducing to the case of GL(2).

Reference: [2].

Day 4:

11. Classification of G-bundles Describe the classification of G-bundles
on the Fargues-Fontaine curve in terms of Kottwitz’ set B(G) of isocrys-
tals with G-structure. This relates semistable G-bundles with basic
elements b ∈ B(G), and automorphism groups with the inner forms Jb
of G. Reference: [3]
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12. Proof of Geometric Langlands for GL(2), first part

The classical case:

(a) Explain the construction of cuspidal automorphic functions based
on their Whittaker model.

(b) Recall the Casselman-Shalika formula for the values of the Whit-
taker function with specified behavior with respect to Hecke operators.

The Whittaker model in the geometric case:

(a) Explain how one would want to mimic the classical construction in
geometry, and why this is non-obvious, because one runs into infinite-
dimensional objects.

(b) Explain the truncated version of the construction.

The Whittaker model in geometry:

(a) Introduce Laumon’s sheaf.

(b) Explain how it gives a geometric counterpart of the Whittaker
function.

Reference: [7].

13. Uniformization of BunG Describe the analogue of the Beauville-
Laszlo uniformization. In particular, discuss the B+

dR-Grassmannian
of [13, Lecture 22]. Use that for any reductive group G, any G-torsor
on the Fargues-Fontaine curve becomes trivial after removing a point,
cf. [3]. Use this to construct many smooth maps into BunG, showing
that BunG behaves like an Artin stack.

14. Formulation of Fargues’ conjecture Formulate Fargues’ conjecture
for discrete L-parameters of the Weil group of K. Reference: [4].

Day 5:

15. Relation with the classical local Langlands correspondence Re-
call the classical formulation of the local Langlands correspondence,
and its extension to “extended pure inner forms” (= {Jb, b ∈ B(G)basic})
by Kaletha, cf. e.g. [10, Conjecture F], and make the link with Fargues’
conjecture.
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16. Proof of Geometric Langlands for GL(2), second part

Construction of the automorphic sheaf:

(a) Explain the construction of the sought-for automorphic sheaf from
Laumon’s sheaf.

(b) State the key vanishing result.

(c) Explain that we need to prove the descent statement.

(d) Explain the trick to prove the descent statement using Euler char-
acteristics.

The Hecke property:

(a) Reduce the verification of the Hecke property to the case of the
basic Hecke functor.

(b) Verify the latter on the Whittaker model.

Reference: [6, 1].

17. The case of Gm Explain how the case G = Gm of Fargues’ conjecture
is related to local class field theory (via the Lubin-Tate approach to
local class field theory).

18. Relation with the cohomology of Lubin-Tate spaces Explain
how in the case G = GLn, the Hecke equivariance property for the
simplest cocharacter µ = (1, 0, . . . , 0) is related to the description of
the cohomology of Lubin-Tate spaces (Carayol’s conjecture, proved by
Boyer and Harris-Taylor). This generalizes to a relation with the co-
homology of moduli spaces of local shtukas.

Remark. Many references (e.g. [4], [5], [13]) listed below are not in their
final form, but should be available well before the Arbeitsgemeinschaft. We
also advice the speakers to directly contact the authors.
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Participation:

The idea of the Arbeitsgemeinschaft is to learn by giving one of the lectures
in the program.

If you intend to participate, please send your full name and full postal
address to

ag@mfo.de

by December 7th at the latest.
You should also indicate which talk you are willing to give:

First choice: talk no. . . .
Second choice: talk no. . . .
Third choice: talk no. . . .

You will be informed shortly after the deadline if your participation is
possible and whether you have been chosen to give one of the lectures.

The Arbeitsgemeinschaft will take place at Mathematisches Forschungsin-
stitut Oberwolfach, Schwarzwaldstrasse 9-11, 77709 Oberwolfach-Walke, Ger-
many. The institute offers accommodation free of charge to the participants.
Travel expenses cannot be reimbursed, except for young participants who
may be supported by an NSF grant, see

http://www.mfo.de/for-guest-researchers/apply-for-a-stay/nsf-grant

Further information will be given to the participants after the deadline.
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