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1. Introduction

A fundamental problem in representation theory is the description of all irre-
ducible representations. A first step in such a description is a parametrization of
irreducible representations. Once we have a paramatrization we move onto more
refined questions: dimensions, character formulas, explicit realizations, descriptions
of categories, etc.

This Arbeitsgemeinschaft will be concerned with these questions for algebraic
representations of (split) reductive algebraic groups. We start with a split reductive
algebraic group G (like GLn or Sp2n) and consider representations

ρ : GÑ GLpV q

in the category of algebraic groups. These are the representations that arise in
algebraic geometry (on rings of functions, on cohomology of equivariant bundles,
. . . ). Thus these representations arise when pursuing “harmonic analysis in alge-
braic geometry”.

If our base field is C (or more generally of characteristic zero), then the theory
is very mature. One has a parametrization via highest weight, the characters of
irreducible representations are given by Weyl’s character formula, and one has a
realization of all simple modules as global sections of line bundles on flag varieties
(the Borel-Weil theorem). Moreover the category of representations is semi-simple.
In fact, the whole theory runs parallel to the representation theory of compact Lie
groups.

If our base field is of characteristic p then the situation is much more complicated.
We still have a parametrization via highest weight (Chevalley’s theorem), however
our categories of representations are not semi-simple (unless G is a torus) and
the dimensions and characters of our irreducible representations are unknown in
general. One source of the complexity is the Frobenius morphism

Fr : GÑ G

in characteristic p. (For example, if G “ GLn this is the morphism which raises
matrix entries to their pth power.) Precomposing with the Frobenius morphism
provides a new operation on representations called Frobenius twist. It is not difficult
to check that the Frobenius twist of an irreducible module is again irreducible, but
that its highest weight has been dilated by p. Nothing like this operation exists
in characteristic 0, and we get a first hint of the complexities awaiting us. In
general the representation theory of reductive algebraic groups is a fascinating mix
of the characteristic zero theory (highest weights, Weyl character formula, . . . )
with flavours coming from characteristic p (non-semi-simplicity, Frobenius twist,
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relation to finite groups of Lie type . . . ). This Arbeitsgemeinschaft will focus on
the use of geometric techniques (perverse and parity sheaves, geometric Satake,
Smith-Treumann theory, . . . ) to make progress on this difficult and fascinating
subject.

1.1. The IC paradigm in geometric representation theory. Much of our
deeper understanding of the representation theory of reductive algebraic groups
draws inspiration from the Kazhdan-Lusztig conjecture for simple highest weight
representations of complex semi-simple Lie algebras. For this reason, we take some
time to recall this conjecture, before returning to reductive algebraic groups.

Let g denote a complex semi-simple Lie algebra, and fix a choice of a Cartan and
Borel subalgebra h Ă b. Any weight λ P h˚ can be viewed as a one-dimensional
representation Cλ of b via the identification h “ b{rb, bs, inducing up to g one
obtains a Verma module

∆λ “ Upgq bUpbq Cλ.

This Verma module has a unique irreducible quotient ∆λ � Lλ, and one obtains
in this way all irreducible highest weight modules for g.

The classes of the modules t∆λ | λ P h
˚u and tLλ | λ P h

˚u both form bases for
the Grothendieck group of highest weight g-modules. By the PBW theorem, the
character of each ∆λ is easily written down, and hence to know the character of
Lλ it is enough to express its class in terms of Verma modules. This is the subject
of the Kazhdan-Lusztig conjecture. In an important case (the “principal block”) it
reads:

rLx¨p´2ρqs “
ÿ

yPWf

p´1q`pxq``pyqPy,xp1qr∆y¨p´2ρqs

It is not important to understand all the details of this conjecture for the purposes
of this introduction.1 The most important point is the appearance of (evaluations at
1 of) Kazhdan-Lusztig polynomials Px,y on the right-hand side. These are certain
polynomials which are computable by a combinatorial algorithm involving only the
Weyl group and its simple reflections. These polynomials were introduced by Kazh-
dan and Lusztig in a seminal paper in 1979, and a year later they showed that these
polynomials encode the local intersection cohomology groups of Schubert varieties.
The Kazhdan-Lusztig conjecture was proved soon after by Beilinson-Bernstein, and
Brylinski-Kashiwara using D-modules and the Riemann-Hilbert correspondence.
Another proof was given a decade later by Wolfgang Soergel, using what came to
be known as Soergel bimodules.

The Kazhdan-Lusztig conjecture gave rise to what one might call the “IC par-
adigm” in geometric representation theory. With disarming regularity topological
invariants of singularities (in particular graded dimensions of stalks of IC sheaves)
give important representation theoretic information.2 This has been a central vein
of research for over forty years.

1For the sake of completeness: Wf is the Weyl group, ` : Wf Ñ Zě0 is the length function; ρ

denotes the half-sum of the positive roots and ¨ denotes the dot action, i.e. x ¨ λ “ xpλ` ρq ´ ρ.
2For an impressive list of applications of the IC paradigm, the reader should consult Lusztig’s

superb lecture [Lus91] at the 1990 ICM.
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1.2. Lusztig’s character formula. How effective is the IC paradigm for study-
ing modular (i.e. mod p) representations? This is the main problem which this
Arbeitsgemeinschaft aims to address.

Let us return to the study of representations of a split reductive group G defined
over a field k. As we mentioned above, the situation is well-understood if k is of
characteristic 0, and so we might as well assume that k is of characteristic p ą 0.
To any dominant weight λ of our torus, we may associate a Weyl module ∆λ. These
are roughly analogous to Verma modules in category O:

(1) their character is known (and given by Weyl’s character formula);
(2) each ∆λ admits a unique simple quotient Lλ;
(3) the Lλ constitute all simple G-modules.

As in the case of category O, we know the character of Lλ if we can express its
class in the Grothendieck group in terms of Weyl modules. Such an expression
was conjectured by Lusztig, a year after the formulation of the Kazhdan-Lusztig
conjecture, and is known as the Lusztig character formula:

(1) rLx¨pp´2ρqs “
ÿ

yPW

p´1q`pxq``pyqPy,xp1qr∆y¨pp´2ρqs

This formula is formally very similar to the Kazhdan-Lusztig conjecture. The main
difference is that the finite Weyl group Wf is replaced by the affine Weyl group
W , so the Kazhdan-Lusztig polynomials which appear on the right hand side are
now those for the affine Weyl group. (Also, ¨p denotes the “p-dilated dot action”
and one should disregard any weights y ¨p p´2ρq appearing on the right hand side
which are not dominant.)

Lusztig conjectured that (1) holds, as long as the characteristic is not too small.3

An important consequence of Lusztig’s conjecture is the rather remarkable pre-
diction that the representation theory of G should be “uniform in p”. Whilst the
Kazhdan-Lusztig conjecture was solved remarkably quickly, Lusztig’s conjecture
was much more resistent to attack. In the mid 1990s, it was established that, once
we fix a root system, (1) holds for p larger than some ineffective bound. (This result
is due to Andersen-Jantzen-Soergel, and made crucial use of long and complicated
works on representations of affine Lie algebras and quantum groups at roots of
unity, by Kazhdan-Lusztig, Lusztig and Kashiwara-Tanisaki). However, several as-
pects of Lusztig’s conjecture remained mysterious. For example, for a given G and
given p, does Lusztig’s conjecture hold? We still don’t know in general!

1.3. Modular geometric representation theory. We do however have a good
understanding of the geometry underlying Lusztig’s character formula. For exam-
ple, this new understanding means that we can answer the question at the end of
the last paragraph in considerably more cases than we could a decade ago.

Recall that the “IC paradigm” can be summarized as the idea that stalks of
intersection cohomology sheaves provide important information in representation
theory. In order to attack questions in modular representation theory, it is natural
to consider perverse sheaves with coefficients in fields of positive characteristic.
(We work either over complex varieties with their classical metric topology, or
with étale sheaves with torsion coefficients coprime to the characteristic of our

3His original condition on p is a little tricky to state. However results of Kato proved soon

after Lusztig formulated his conjecture led to a widespread belief that (1) should hold as long as
p is larger than the Coxter number h of G.
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schemes.) A major drawback of modular perverse sheaves is that computations are
extremely difficult! The main reason is the absence of a good theory of weights,
and its associated package of miracles (e.g. hard Lefschetz and the Decomposition
Theorem).

However, despite its difficulties, this is still a fruitful line of attack. The lectures
of this Arbeitsgemeinschaft will explore the following ideas in some depth:

(1) The geometric Satake equivalence [MV07], which gives an equivalence be-
tween the category of representations of a split reductive algebraic group
and certain perverse sheaves on the affine Grassmannian.

(2) The realization (that began with [Soe00]) that there is a close link between
the IC paradigm and the validity of the Decomposition Theorem for certain
Bott-Samelson resolutions with mod p coefficients. An important related
idea is that the indecomposable summands (“parity sheaves”) of resolutions
are interesting, even when they fail to be IC sheaves.

(3) The realization (made explicit in [JMW14], but already implicit in [CG97]
and [dCM02]) that certain intersection forms attached to the fibres of maps
control the failure of the Decomposition Theorem. (This observation even-
tually led to the construction by Williamson of a systematic family of
counter-examples to Lusztig’s character formula [Wil17c, Wil17b].)

(4) The idea that the stalks of parity sheaves should replace IC data in modular
representation theory. (This idea first appears in [Soe00] and was explored
in depth in [RW18]).

(5) Points (2), (3) and (4) above are also intertwined with progress under-
standing the “Hecke category” (first in its geometric incarnation via Soergel
bimodules, and later in its diagrammatic incarnation). This allows (slow!)
algorithmic computation of the stalks of parity sheaves.

The Arbeitsgemeinschaft will culminate with a discussion of the recent paper
[RW19] which uses Smith-Treumann theory (a sheaf theoretic operation unique to
Fp-sheaves and Z{pZ-actions) to give a new proof of Lusztig’s character formula,
passing through the geometric Satake equivalence. An advantage of this approach
is that it gives character formulas in terms of the stalks of parity sheaves in all
characteristics.

2. Highest weight categories, KL polynomials and reductive groups

2.1. Category O and highest weight categories. Familiarity with category O
is invaluable in representation theory, and will serve as a running example in the
talks that follow. Discuss category O in detail: Block decompositions, principal
block, Verma modules, simples, example of sl2pCq including a discussion of all five
indecomposables in the principal block. (Here [Hum08, Soe21] are excellent refer-
ences.4) Introduce the notion of a highest weight category following [Ric, Appendix
A]. (The origin of this version of highest-weight formalism is to be found in [BGS96,
Section 3].) This beautiful classical example of category O is a motivation behind
a lot of the more advanced material that we will discuss this week, so the speaker
should be aware of where we are going, and highlight the general features evident
in the example of category O.

4The best human reference is probably W.S. so feel free to ask him!
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2.2. Coxeter groups and Kazhdan-Lusztig polynomials. Discussion of the
Hecke algebra of a Coxeter group. (This is an infamous exercise in [Bou68], and is
treated in detail in [Hum90].) Kazhdan–Lusztig polynomials (including parabolic
versions). The original reference for Kazhdan-Lusztig polynomials is [KL79]. The
speaker should follow the treatment (and conventions) of [Soe97], and comment
on the relationship to [KL79] in a remark. Discussion of positivity properties:
positivity of coefficients of Kazhdan-Lusztig polynomials, positivity of structure
constants of multiplication. State and discuss Kazhdan-Lusztig conjecture and its
relation to BGG-reciprocity and translation functors.

Examples: Weyl groups of Kac–Moody groups, (extended) affine Weyl groups of
reductive groups.

Optional extra: If time permits, the speaker might explain the computation of
Kazhdan–Lusztig polynomials for dihedral groups. The speaker could also use Joel
Gibson’s LieVis software to give “live” computations of Kazhdan-Lusztig polynomi-
als for affine Weyl groups: https://www.jgibson.id.au/lievis/

2.3. Reductive groups I. Structure of reductive groups over algebraically closed
fields. Maximal tori, Borel subgroups, roots, root data etc. Classification of simple
modules. Induced modules, Weyl modules. Weyl’s character formula. Kempf’s
vanishing theorem. (The bible for representations of reductive algebraic groups is
[Jan03], however the beginner might get lost. To help the reader navigate, the
papers [Wil17a, CW21] are useful.) That representations of reductive algebraic
groups forms a highest weight category should be emphasized.

Examples: As a basic example one should discuss the construction of induced
modules for SL2 via global sections of equivariant line bundles on P1. One might also
like to discuss global sections of equivariant line bundles on Pn´1 (to get symmetric
powers, see [Jan03, §II.2.16]), as well as on Grassmannians (to obtain e.g. the
fundamental representations of SLn).

Optional extras: If time permits, the speaker could also discuss the Steinberg
tensor product theorem.

2.4. Reductive groups II. State the Borel–Weil–Bott theorem, and linkage prin-
ciple. Introduce translation functors, and establish their basic properties: (i) effect
on simple/induced/Weyl modules5; (ii) that they provide equivalences when the
stabilizer in the affine Weyl group is the same; (iii) conclude that for many ques-
tions (e.g. determination of characters) it suffices to analyse the principal block.
References for this talk include [Jan03], and the references therein.

Optional extras: If time permits, the following could be discussed, and is left to
the discretion of the speaker:

(1) Discuss the failure of the Borel–Weil–Bott theorem in positive characteristic
(e.g. examples of Mumford and Griffiths).

(2) Discuss a proof of the linkage principle. Here there are two routes: one valid
in large characteristic via consideration of the reduction modulo p of the
centre of the enveloping algebra together with the central character ([Ric,
§2.4]); the other in full generality due to Andersen, and discussed in detail
in [Jan03]. (Note that one of the goals of this Arbeitsgemeinschaft is to
give a geometric proof, via the geometry of the affine Grassmannian.)

5Effect on simple modules is hard in general! But some things are known, and this should be
recalled.
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3. Hecke categories

3.1. Perverse sheaves on flag varieties. Brief reminder on perverse sheaves,
intersection cohomology complexes and the Decomposition Theorem. Brief discus-
sion of the geometry of flag varieties (for Kac–Moody groups and affine versions):
Bruhat decomposition, relation with Coxeter combinatorics. Categories of perverse
sheaves (highest weight structure, classification of simples), including parabolic and
Whittaker versions. (There are many references for this material but [Ric] provides
a good starting point.) Discuss in detail the case of SL2, including a discussion of
all five indecomposable perverse sheaves. Discuss the computation of stalks of ICs
in terms of Kazhdan-Lusztig polynomials following [Spr82].6

3.2. The Hecke algebra and Hecke category. Discuss the Hecke algebra of
BpFqq-biinvariant functions onGpFqq and establish isomorphism with the abstractly
defined Hecke algebra from the second lecture (with v appropriately specialized).
Briefly recall the equivariant derived category from [BL94]. Discuss the categori-
fication of the Hecke algebra, following e.g. [Wil18, §2.1-2.2]. The speaker should
discuss the categories of the previous talk as (right) modules over the Hecke cate-
gory.

3.3. Soergel bimodules. Definition and first examples. State the classification
of the indecomposable bimodules. (References for this material include [Soe07,
EMTW20].) Discuss the relation to the Hecke category of the previous lecture (i.e.
by taking hypercohomology). State that hypercohomology gives an equivalence of
additive categories (see [Soe01, §3.4] and [BY13]).

Optional extra: The speaker may wish to spend the second part of their talk
giving a survey of [SVW18], and in particular highlight the equivalence:

MTDerBˆBpGq – KbpSBimq.

Emphasis should be placed on the idea that one can consider an additive category
as a surrogate for an appropriate notion of weights (e.g. étale, Hodge, or motivic).

Optional extra: One could discuss the Soergel conjecture, and relation with KL
conjecture (via Soergel’s functor V.)

3.4. Parity sheaves. Now we start to consider what happens when our sheaf
coefficients are taken to be of characteristic p. Discuss the validity of the Decompo-
sition Theorem with mod p coefficients, and the role of intersection forms (following
[JMW14]). Examples should be given (e.g. from [JMW12] or [Wil18, §1.5]). Define
parity sheaves (following [JMW14]) and state and prove their classification. As an
application, use the Decomposition Theorem to show that parity sheaves coincide
with IC sheaves when the coefficients are in Q. Discuss what goes wrong when we
try to compute the stalks of parity sheaves with mod p coefficients, as in Talk 3.1.

3.5. Diagrammatic Hecke category. Define the diagrammatic Hecke category,
following e.g. [EMTW20]. State the classification of indecomposable objects, and
the categorification theorem. Define the p-canonical basis. Give some sample com-
putations. (It might be good to liase with the speaker of the previous section, so

6Pramod Achar’s book is a another good reference for the computation performed via parity
techniques. This books is currently being published, but speakers can request an electronic copy
from the organizers.
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that one example is discussed from two points of view. E.g. the only singular
Schubert variety in Sp4 {B, see [Wil18, Example 2.25].)

Optional extra: Discussion of light leaves and algorithmic description of inde-
composables. The reference here is [JW17]. For more examples, the reader may
consult the last chapter of [EMTW20].

4. Character formulas and geometry

Now we return to reductive groups, and their character theory.

4.1. Lusztig’s conjecture. Compute simple characters for SL2 via hand + Stein-
berg’s tensor product theorem. State Jantzen’s sum formula and use it to deduce
some simple characters in low rank, e.g. for SL3 and Sp4. (The more complicated
case of SL4 is discussed in §II.8.20 of [Jan03], where a reference to an old paper
of Jantzen (in German) is given for SL3 and Sp4.) State Lusztig’s conjecture, and
discuss bounds (following e.g. the discussion in [Wil17a, §1.12]). Give a birds-eye
view of the proof in large characteristic (e.g. following the discussion in [Wil17a,
§1.15]).

Optional extras: If time permits, one could discuss Fiebig’s bound in [Fie12] and
roughly how he comes to it.

4.2. Combinatorial origins of geometric Satake. The speaker should explain
how Lusztig’s character formula leads to a prediction for the values of certain affine
Kazhdan-Lusztig polynomials at 1. (This is discussed in Lusztig’s notes to his
papers available on the arxiv, and also in [Ric, Chapter 1, 3.5] and [Wil17a, §1.14]).
State that this prediction was proved by Lusztig [Lus83] and Kato [Kat82].7

4.3. Geometric Satake and Finkelberg-Mirković. Discuss the geometry of
affine Grassmannians. State the geometric Satake equivalence. Discuss one example
(e.g. SL2) in detail. Discuss the proof, following [MV07, BR18, Zhu17]. Discuss the
Finkelberg-Mirković conjecture (references include [FM99], [AR18], and [Wil17a,
2.5]). Explain how Lusztig’s conjecture for large p follows from the Finkelberg-
Mirković conjecture.

4.4. Torsion explosion. Define modular category O following [Soe00]. Use the
methods of [Soe00] to deduce that Lusztig’s conjecture implies that that parity
sheaves on finite flag varieties coincide with IC sheaves when the coefficients are
of characteristic ą h. (The crucial computation of the endomorphism of the “big
projective” in modular category O can be left as a black box.) Explain the “torsion
explosion” theorem, following [Wil17c, Wil17b]. (Note that the proof of [Wil17c] is
diagrammatic and relies on a result of [HW]. The proof in [Wil17b] is geometric,
and is probably closer to the spirit of this Arbeitsgemeinschaft.)

Optional extras: The appendix to [Wil17b] contains some interesting number
theoretic problems related to torsion explosion. If time permits, these problems
could be discussed briefly.

7Lusztig’s result was also reproved by Knop in “On the Kazhdan-Lusztig basis of a spherical
Hecke algebra”.
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5. Higher representation theory

5.1. Tilting character formula. Define and classify tilting objects in a highest
weight category (see e.g. [Ric]). Explain classification of indecomposable tilting
objects in the particular setting of representations of reductive algebraic groups.
State Donkin’s tilting tensor product theorem (see [Jan03, §II.E.9]) and use it to
deduce the characters of all tilting modules for SL2 (see [EH02] and [Ric, §3.2]).
State Soergel’s theorem computing the characters of tilting modules for quantum
groups in terms of anti-spherical Kazhdan-Lusztig polynomials. (To this end the
speaker should give a birds-eye picture of the representation theory of quantum
groups, without going into too much detail.) Explain why knowledge of tilting
characters implies knowledge of simples characters (under mild restrictions on p,
see [RW21] and the references therein).

Optional extras: If time permits, one could also discuss the relationship between
tilting modules for GLn and decomposition numbers for symmetric groups.

5.2. Categorical conjecture. Explain the definition of the anti-spherical p-Kazhdan–
Lusztig polynomials, and explain the relation with “usual” parabolic Kazhdan–
Lusztig polynomials. State the “numerical” and “categorical” conjectures of Riche-
Williamson. Define the categorified anti-spherical module. Explain why the cat-
egorical conjecture implies the numerical one. If the speaker wishes, they can
discuss these conjectures in the context of higher representation theory. (For all of
the above, see [RW18].)

Optional extra: Explain the simple character formula of Riche-Williamson [RW21],
as another instance of higher representation theory.

6. The Iwahori-Whittaker model and Smith-Treumann theory

6.1. The Iwahori-Whittaker model. Discuss the Iwahori-Whittaker model of
geometric Satake, following the original paper [BGM`19]. If time permits, it would
be nice to discuss the relation with the “Casselmann-Shalika formula.” Emphasis
should be given to four aspects: (i) the Iwahori-Whittaker gives a model for RepG
which extends to derived categories; (ii) although one loses the monoidal structure,
it is still a right module over the Satake category; (iii) parity sheaves correspond
to tilting modules; (iv) the “shift by ρ” on parameters.

Optional extra: If the speaker has time, they might explain the connection
between tilting modules and parity sheaves in the setting of geometric Satake
[JMW16], and then how [BGM`19] deduce that the perverse cohomology groups
of parity sheaves are always tilting.

6.2. Smith-Treumann theory. Explain the Smith quotient associated to a trivial
action of µ` on a variety, and the Smith restriction functor Db

µ`
pXq Ñ SmpXµ`q,

following Treumann, [Wil] and [RW19]. (The notation in this subject has not
stabilized. For the benefits of the week it is probably best to stick as closely as
possible to the notation of [RW19].) Explain that “Smith restriction commutes
with functors” by proving it for a few functors. (If time permits, deduce classical
theorems of Smith on fixed points of Z{p-actions on homology p-spheres.) Explain
the necessary modifications to consider Smith restriction in the étale setting, and
in particular prove the crucial [RW19, Proposition 2.6].
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6.3. Smith–Treumann theory and the linkage principle. This talk should
cover the main results of [RW19]. Firstly, the loop rotation action on the affine
Grassmannian should be discussed, and the fixed points under µ` should be de-
scribed. Next, it should be proved that the Smith restriction functor preserves
standard and costandard objects, and hence maps indecomposable tilting sheaves
to indecomposable parity sheaves. Lastly, it should be explained that indecom-
posable parity sheaves on affine Grassmannians stay indecomposable in the Smith
quotient.
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modules. Ann. Sci. Éc. Norm. Supér. (4), 49(2):257–275, 2016. 8

[JW17] Lars Thorge Jensen and Geordie Williamson. The p-canonical basis for Hecke algebras.
In Categorification and higher representation theory, volume 683 of Contemp. Math.,

pages 333–361. Amer. Math. Soc., Providence, RI, 2017. 7

[Kat82] Shin-ichi Kato. Spherical functions and a q-analogue of Kostant’s weight multiplicity
formula. Invent. Math., 66(3):461–468, 1982. 7

[KL79] David Kazhdan and George Lusztig. Representations of Coxeter groups and Hecke
algebras. Invent. Math., 53(2):165–184, 1979. 5

[Lus83] George Lusztig. Singularities, character formulas, and a q-analog of weight multiplici-

ties. In Analysis and topology on singular spaces, II, III (Luminy, 1981), volume 101
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[MV07] I. Mirković and K. Vilonen. Geometric Langlands duality and representations of al-

gebraic groups over commutative rings. Ann. of Math. (2), 166(1):95–143, 2007. 4,
7

[Ric] Simon Riche. Lectures on modular representation theory of reductive algebraic groups.

https://lmbp.uca.fr/ riche/curso-riche-total.pdf. 4, 5, 6, 7
[RW18] Simon Riche and Geordie Williamson. Tilting modules and the p-canonical basis.

Astérisque, (397):ix+184, 2018. 4, 8
[RW19] Simon Riche and Geordie Williamson. Smith-Treumann theory and the linkage prin-

ciple. arxiv:2003.08522, 2019. 4, 8

[RW21] Simon Riche and Geordie Williamson. A simple character formula. Ann. H. Lebesgue,
4:503–535, 2021. 8

[Soe97] Wolfgang Soergel. Kazhdan-Lusztig polynomials and a combinatoric[s] for tilting mod-

ules. Represent. Theory, 1:83–114 (electronic), 1997. 5
[Soe00] Wolfgang Soergel. On the relation between intersection cohomology and representa-

tion theory in positive characteristic. J. Pure Appl. Algebra, 152(1-3):311–335, 2000.

4, 7
[Soe01] Wolfgang Soergel. Langlands’ philosophy and Koszul duality. In Algebra—

representation theory (Constanta, 2000), volume 28 of NATO Sci. Ser. II Math.

Phys. Chem., pages 379–414. Kluwer Acad. Publ., Dordrecht, 2001. 6
[Soe07] Wolfgang Soergel. Kazhdan-Lusztig-Polynome und unzerlegbare Bimoduln über Poly-

nomringen. J. Inst. Math. Jussieu, 6(3):501–525, 2007. 6
[Soe21] Wolfgang Soergel. Darstellungen halb-einfacher Liealgebren.

https://home.mathematik.uni-freiburg.de/soergel/Skripten/XXDHL.pdf, 2021.

4
[Spr82] T. A. Springer. Quelques applications de la cohomologie d’intersection. In Bourbaki

Seminar, Vol. 1981/1982, volume 92 of Astérisque, pages 249–273. Soc. Math. France,
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