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1. Introduction

The notion of twistor structure has been introduced by Simpson in [Sim97],
following a letter to him by Deligne, in order to include the objects related by the
Kobayashi-Hitchin correspondence on a compact Kähler manifold, namely stable
Higgs bundles with vanishing characteristic classes and simple flat holomorphic
bundles, into a larger family, so that to equip the enlarged moduli space of a hyper-
kähler structure, extending thereby the original construction of Hitchin [Hit87].
A more in-depth elaboration of this fundamental construction has recently been
developed by Simpson [Sim08, Sim21]. The talks in this session will however not
pursue in this direction, but the participants may consult these recent papers to
better understand the backgrounds of the twistor approach.

Already in 1997, Simpson envisioned the following “meta-theorem”:

Meta-theorem (Simpson, [Sim97]). If the words “mixed Hodge structure” (resp.
“variation of mixed Hodge structure”) are replaced by the words “mixed twistor
structure” (resp. “variation of mixed twistor structure”) in the hypotheses and con-
clusions of any theorem in Hodge theory, then one obtains a true statement. The
proof of the new statement will be analogous to the proof of the old statement.

The aim of this session is to illustrate this meta-theorem with the proof of a
conjecture made by Kashiwara in various talks around 1996 [Kas98], that is, the
decomposition theorem for semi-simple holonomic D-modules. One can summarize
the twistor approach by saying that twistor theory provides with a theory of weights
a category of objects that do not naturally exhibit a weight structure.

The decomposition theorem was first proved in [BBDG82] for pure perverse
`-adic sheaves on varieties over a finite field of characteristic p 6= `. It asserts
that the push-forward by a proper morphism of such an object decomposes, in the
derived category, into its perverse cohomology sheaves and each such is semi-simple.
Furthermore, by a technique of reduction to characteristic p, Beilinson, Bernstein,
Deligne and Gabber were able to extend it to semi-simple perverse sheaves on
smooth complex projective varieties which are of geometric origin. M. Saito [Sai88,
Sai90b] developed at the end of the eighties a completely new strategy to extend
this result on complex varieties to any (semi-)simple perverse sheaf whose associated
local system underlies a polarizable variation of Q-Hodge structure, not necessarily
of geometric origin. The theory of mixed Hodge modules is now widely used in
Algebraic geometry.

The decomposition theorem for semi-simple perverse sheaves on smooth complex
projective varieties has now two proofs. One is by Drinfeld [Dri01], extending the
proof of [BBDG82] by reduction to characteristic p, relaxing the assumption of
geometric origin by relying on a conjecture of de Jong, later proved by Böckle-
Khare [BK06] and Gaitsgory [Gai07]. The other one, which will be the main topic
of this session, applies the meta-theorem of Simpson to the strategy of M. Saito by
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introducing the category of polarizable twistor D-modules. The starting point were
the papers [Moc02, Sab05], and the proof was achieved in [Moc07]. One key point in
M. Saito’s theory is the use of Schmid’s norm estimates and orbit theorems [Sch73]
through the Hodge-Zucker theorem [Zuc79] yielding the Hodge theorem for the
intersection complex of a polarizable variation of Hodge structure on a punctured
compact Riemann surface. The “twistor analogues” of these results were provided
by Simpson [Sim90].

Furthermore, Simpson also raised in [Sim90] the following:
“A question is whether one could set up a correspondence in which some nontame

harmonic bundles correspond to systems of equations with irregular singularities.”
The strength of the twistor approach is that it enables to enlarge the scope

of Hodge theory not only to arbitrary semi-simple perverse sheaves, equivalently
semi-simple regular holonomic D-modules via the Riemann-Hilbert correspondence,
on smooth complex projective varieties, but also to possibly irregular semi-simple
holonomic D-modules. In such a way, the analogy with the arithmetic theory of
pure `-adic perverse sheaves on varieties over finite fields is made stronger, as the
latter does not restrict to tame objects, contrary to M. Saito’s Hodge modules,
whose associated D-modules are known to be regular holonomic. For example, the
analogue of the Katz-Laumon `-adic Fourier transformation exists in the theory of
mixed twistor D-modules.

Simpson’s insight has first been confirmed in dimension 1 [Sab99, BB04] and,
after a first step in [Sab09], the full development of the theory of wild twistor
D-modules, both in the pure and the mixed case, has been achieved by T. Mochizuki
in the sequence of works [Moc11, Moc15], extending [Moc07]. In particular, the
monographs [Moc07, Moc11] provide the complete proof in the complex analytic set-
ting of the conjecture of Kashiwara for semi-simple holonomic D-modules (note that
a wild analogue of Drinfeld’s proof for the regular case still not exists). An overview
of this work is provided in [Moc14] (see also [Moc15, Chap. 1], and [Sab13] for a
focus on the decomposition theorem). Let us also mention that the decomposition
theorem in the Kähler setting, for regular holonomic D-modules underlying a po-
larizable pure twistor D-module, has recently been proved by T. Mochizuki [Moc22]
(see also [Sai90a, Sai22] for the case of OX).

Let us end this introduction by emphasizing that Hodge module theory or twistor
D-module theory is not the only way to the decomposition theorem in complex
algebraic geometry. For the case of regular holonomic D-modules (or perverse
sheaves) of geometric origin, so that Hodge theory is involved, we mention the work
of de Cataldo and Migliorini [dCM02, dCM05, dCM09] (see also [Wil17]). A similar
idea has been developed in [WY21] for proving the decomposition theorem in the
case of a semi-simple local system on a smooth projective variety, relative to a
morphism to another variety.

We suggest to have a look at the introductory chapters of [Sab05], [Moc07] and
[Moc11] to understand how the various arguments fit together, leading to the proof
of Kashiwara’s conjecture.

2. Description of the talks

Monday: Introduction to twistor theory.

Lecture 1: Pure and mixed twistor structures, comparison with Hodge structures. This
lecture does not contain much material, but allows the audience to become familiar
with the notion at a quiet path.

Start with [Sim21, §1.1] in order to explain the word “twistor structure”.
(a) Introduce the category of pure and mixed twistor structure, Tate objects,

half-Tate objects O(p{0} + q{∞}). Two main two results to be proved in this
lecture:

• the category of mixed twistor structure is abelian,
• faithfulness and exactness of some functors such as GrW , ΞDR, ΞDol.
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Define complex (pure or mixed) Hodge structures, explain the Rees construction,
and interpret the w-oppositeness property in terms of twistor structures. Charac-
terize Hodge structures among twistor structures by the existence of a C∗-action,
making the category of Hodge structures a subcategory of that of twistor structures
compatible with the weight filtration.

Reduction of pure twistor structures to weight zero by half-Tate twists.
References: Mainly, [Sim97, §1], and for the Tate object refer to [Moc07, §3.3]

and [Moc15, §2.1.8], [Moc22, §§7.1.1, 7.1.2, 7.1.6].
Further reading: [Sab18, §§1.1.a, 1.1.b].

Lecture 2: Twistor structure on a complex manifold, polarization.
(a) Variations of twistor structures on complex manifolds (simply called twistor

structures on complex manifolds), λ-connections.
References: [Sim97, §3].
Further reading: [Moc07, §§3.1, 3.2] and [Moc22, §§7.2.1–7.2.3].
(b) Anti-holomorphic involution on a twistor structure, polarization of a pure

twistor structure (on a point).
Equivalence “pure polarized twistor structure of weight 0 ⇐⇒ Complex vector

space with a Hermitian metric”.
Important example: polarization of the Tate objects.
Recall the definition of polarization of a complex Hodge structure and check that

it is a polarization in the sense of twistor structures.
Polarization of a pure twistor structure on a complex manifold.
Main theorems to be proved:

• Any pure twistor substructure of a polarized pure twistor structure of the
same weight is a direct summand, and the polarization induces a polariza-
tion of the substructure.
• The category of polarizable pure twistor structures of a given weight is

semi-simple.

References: [Sim97, §§2, 3], [Moc07, §3.5], [Moc22, §7.2.4]

Lecture 3: Harmonic bundles and equivalence with smooth polarized twistor structures
of weight 0. Definition and basic examples of harmonic bundles on a complex man-
ifold, example of variations of polarized Hodge structure.

Basic example: Make explicit the case of rank-one harmonic bundles on the
punctured disc ([Moc07, §6.1], [Sab13, Ex. 1.2]). More basic examples ([Moc02,
§3.2], [Moc07, §6.2]).

Equivalence with smooth polarized twistor structures of weight 0 (Lemma 3.1 in
[Sim97], omitting the semi-simplicity property in the global case which is considered
in the next lecture).

References: [Sim97, §3]

Lecture 4: The non-abelian Hodge correspondence and the Hodge-Simpson theorem.
This lecture focuses on the global properties of harmonic bundles on a projective
or Kähler complex manifold, or with respect to a projective morphism: these are
the Hodge and semi-simplicity properties of harmonic bundles.

State the Corlette-Simpson theorem and give the proof of the “easy” direction
of it: on a smooth projective variety, harmonic bundles have semi-simple associated
flat bundles.

For the proof, two possible approaches depending on the speaker’s taste:

• [MHMP, §4.3.b] which is a mixture of the original proof of Corlette [Cor88,
§§2.2, 2.3] and arguments of Simpson [Sim92, §1].

• For another approach more related to the techniques used in the theory
of harmonic bundles: [Moc09b, §2.3] (especially Lemma 2.34, which is the
analogue for the Higgs case is explained in [Sim88, Lem. 3.2]).
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State some consequences: A semi-simple local system on a smooth projective
variety remains semi-simple after pullback.

What about projective pushforward? State the conjecture of Kashiwara. Refer-
ence: [Kas98].

First evidence for this conjecture: the Hodge-Simpson theorem for harmonic
bundles on compact Kähler manifolds.

Give a statement of it following Simpson’s meta-theorem: The k-th cohomology of
a pure polarizable twistor structure of weight 0 is a pure polarizable twistor structure
of weight k and Hard Lefschetz holds in this context. Emphasize the strictness
property, corresponding to the degeneration at E1 of the spectral sequence Hodge
⇒ de Rham.

Sketch a proof of this theorem. Reference: [Sim92, §1], [Sim97, Th. 4.1].

Tuesday: Regular twistor D-modules and the decomposition theorem
for them. The talks will introduce the ambient category where regular twistor
D-modules live, and related functors. After having become more familiar with this
category and its subcategory of regular twistor D-modules, the talks will state and
sketch some of the proofs of the main theorems.

An R-triple has to be thought as a generalization to holonomic D-modules of
a C∞ (or real analytic) bundle with flat connection and two filtrations, one being
holomorphic and the other one anti-holomorphic with respect to the holomorphic
structure induced by the (0, 1) component of the flat connection. The presentation
as an R-triple is intended to avoid passing to real-analytic D-modules in order to
keep control on coherence properties.

Lecture 5: The notion of R-triple and various functors. Introduce the space X =
X ×Cλ and the ring RX. Emphasize similarities and differences with the ring DX .
Category of RX-modules. Notion of strictness. Definition of coherence, character-
istic variety, holonomicity.

Bundles (E,D) with flat λ-connections are RX -modules. RX -modules associated
to filtered DX -modules. Functors to the category of DX -modules or Higgs sheaves
by fixing the value of λ.

Motivations for considering sesquilinear pairings (see e.g. [MHMP, §12.9] for
motivations). Category of R-triples. Yoga of the category of R-triples and basic
operations: Hermitian duality, proper push-forward, (half) Tate twists.

Rephrase the smooth case of twistor theory in the language of R-triples.
Basic example: Make the example of a harmonic bundle on the punctured disc

(Lecture 3) an object of R-triple on the whole disc (see e.g. the various incarnations
of Example 1.2 in [Sab13]).

References: [Sab05, Chap. 1, 2], [Moc07, §§3.10 & 14.1], [Moc15, §2.1].

Lecture 6: Strict specializabilty, S-decomposability and canonical extensions.
Quick review without proofs of the theory of specialization of holonomic

D-modules: V -filtration with respect to a hypersurface and nearby/vanishing
cycle constructions for holonomic D-modules, monodromy, morphisms can and
var, minimal (aka intermediate) extension along a hypersurface, decomposability
with respect to the support (aka S-decomposability). State the theorem assert-
ing that nearby/vanishing cycles of holonomic D-modules commute with proper
pushforward.

The goal of the lecture is to explain how this theory can be extended, by fol-
lowing the same path, to R-modules and R-triples (i.e., taking into account the
sesquilinear pairing). It should only emphasize the analogies and differences of
such constructions for R-modules and their extensions to R-triples. The main word
that makes everything work is strictness. All notions should be illustrated with the
Basic example.
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• For R-modules, introduce the Bernstein relation (justify the choice of the
kind of Bernstein relation with the Basic example) and emphasize that the
roots of the Bernstein polynomial are functions of λ. Definition of strict
specializability and of the local (w.r.t. λ) existence and uniqueness of the
canonical V-filtration.

• Sketch the proof of the the global (w.r.t. λ) existence of nearby and van-
ishing cycles, and the diagram can var for R-modules.

• Definition of the nearby cycle functor of a sesquilinear pairing by means of
Mellin transformation (the vanishing cycle functor and compatibility with
can and var should only be mentioned).

• Conclude with the notion of minimal extension and strict S-decomposability
of R-triples.

• State the compatibility theorem between taking nearby/vanishing cycles
and taking proper pushforward (emphasize the strictness condition). Give
some indication on the proof.

If time permits, mention another approach to the theory, by means of the loca-
lization and dual localization functors, as well as Beilinson’s maximal extension,
following [Moc15, Chap. 3, 4].

References: [Sab05, Chap. 3], [Moc11, Chap. 22], [Moc07, §§14.2–14.4] (see also,
for an easier setting, [MHMP, Chap. 9, 11, 12]).

Lecture 7: Polarizable pure twistor D-modules. Notion of sesquilinear duality of some
weight of an RX -triple. When X is a point, definition of a polarized pure twistor
structure of some weight w in terms of RX -triples equipped with a sesquilinear
duality of weight w.

Inductive definition of polarizable regular twistor D-modules. Emphasize the
purely imaginary case for further use in the proof of the conjecture of Kashiwara.

First properties (Kashiwara’s equivalence, stability by direct summand, etc.).
References: [Sab05, §4.1.b–4.1.e].

The word ‘regular’ is omitted below.
The following statements should be given, however without indication on the

proofs. Details in Lecture 8.a for Statement 1. Statement 2 can be decomposed
as the conjunction of a local one and a global one, by considering tame harmonic
bundles as intermediate objects. It will be taken up in Lecture 11, after tame
harmonic bundles have been introduced in great generality. In between, a proof
of the “easy” direction of Statement 2 only relying on the work of Simpson about
tame harmonic bundles on punctured Riemann surfaces will be given in Lecture 8.b.
References: [Moc07, §1.4].

Statement 1 (decomposition theorem with respect to a projective morphism):
The decomposition theorem for polarizable pure twistor D-modules (Hard Lefschetz
theorem, Riemann bilinear relations).

Statement 2: On a smooth projective variety, semi-simple perverse sheaves are
in one-to-one correspondence with polarizable purely imaginary twistor D-modules
of weight 0 (generalization of Corlette-Simpson).

Lecture 8: Sketch of proofs of Statements 1 and “easy” direction of Statement 2.
This lecture could be divided in two sub-lectures, each of 45mn.

Lecture 8.a: Sketch of proof of Statement 1. The main goal of sub-Lecture 8.a is to
explain how one can reduce the proof of Statement 1 to the case of regular twistor
D-modules on curves. The case of curves is assumed to hold and details will be
given in Lectures 9–10.

Sketch of proof of the decomposition theorem for polarizable pure twistor D-mod-
ules. References: [Sai88, §5.3] as the original reference for the Hodge case (see also
[MHMP, §14.3]); for the twistor case, use [Sab05, Chap. 6], [Moc07, §§14.5, 14.6],
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and [Moc11, Chap. 18] by restricting to the regular case, especially §18.4 which
corrects an error in [Sab05, §6.4(2)].

Lecture 8.b: Sketch of proof of the “easy” direction of Statement 2. The goal of sub-
Lecture 8.b is to show that the perverse sheaf associated to a polarizable pure
twistor D-module on a projective manifold is semi-simple. It is obtained by reduc-
tion to the case of curves by a Zariski-Lefschetz type argument.

First step: Give the definition of a tame harmonic bundle on a punctured Rie-
mann surface: on a disc centered at a puncture, the eigenvalues of the Higgs field
have a pole of order at most one, [Sim90, Synopsis]; equivalently, the coefficients of
the characteristic polynomial of the Higgs field are holomorphic on the disc.

State the main theorem of [Sim90, Synopsis] in the purely imaginary case:
One-to-one correspondence between purely imaginary tame harmonic bundles on

a compact Riemann surface and semi-simple local systems on the complement of
punctures.

Reference: [Sim90, p. 718], and [Sab05, §5.2] for the relation between stability
and semi-simplicity in the purely imaginary case (called Deligne type in loc. cit.).

Second step: Give the proof that polarizable pure twistor D-modules give rise to
semi-simple perverse sheaves on a projective manifold, assuming that the theorem
of Simpson on Riemann surfaces holds, and relying on Statement 1.

Note: Another proof will be sketched in Lecture 11.
Reference: [Sab05, Th. 4.2.12] with the caveat that one should use a corrected

argument explained in (11) of the Erratum to [Sab05] or in [Moc07, §19.2.2].

Wednesday: Tame harmonic bundles. The lectures will focus on the ana-
lytic aspects of regular twistor D-modules, namely tame harmonic bundles. They
are the intermediate objects between perverse sheaves and polarized pure twistor
D-modules. Lectures 9 and 10 explain how to obtain Statements 1 and 2 on Rie-
mann surfaces from the results of Simpson [Sim90].

Lecture 9: Tame harmonic bundles on curves, local properties. Content of this lecture:
From a tame harmonic bundles on a punctured Riemann surface, one explains how
to construct a polarized pure regular twistor D-module of weight 0. In this lecture,
the Riemann surface is a disc ∆ centered at the origin, and the puncture is the
origin, with complement ∆∗.

(1) Recall the definition of tameness for a harmonic bundle on ∆∗(Lecture 8.b).
State Theorem 1 of [Sim90] for curvature bounds and mention that it is
proved by means of Simpson’s main estimate.

(2) State and sketch the proof of Theorem 2 in [Sim90]. Explain the analogous
result for (Eλ,Dλ) for each fixed λ ∈ C ([Moc07, §7.2.1]).

(3) State the main theorem of this lecture as follows: the variation of polarized
pure twistor structure of weight 0 attached to a harmonic bundle on ∆∗

which is tame at the origin extends in a unique way as a polarized pure
twistor D-module on ∆ whose underlying D-module is the intermediate ex-
tension of the flat bundle underlying the variation.

Reference: [Moc07, §20.1] (see also [Sab05, §5.3] for a different approach
to a similar global result on a compact Riemann surface).

(4) Illustrate the proof on a basic model. Reference: [Sab05, §5.1].
(5) The converse assertion: a polarized twistor structure of weight 0 on ∆∗

which is the restriction of a polarized pure twistor D-module on ∆ has an
associated harmonic bundle which is tame at the origin t = 0,
is much simpler (it has already been used in Lecture 8.b, 2nd step):
• the restriction of a polarized regular twistor D-module of weight zero

to the punctured Riemann surface corresponds to a harmonic bundle;
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• by the regularity assumption, each negative step of the V -filtration is
O-locally free in the neighbourhood of λ = 0; since it is stable by the
action of tðt, it follows that the Higgs field, obtained by setting λ = 0
in the action of tðt, satisfies the tameness assumption of [Sim90, §2].

Lecture 10: Tame harmonic bundles on curves, global properties. Content of this lec-
ture: Interpretation (and adaptation) of the results of Simpson in terms of twistor
D-modules on curves. Sketch of proofs of Statements 1 and 2 of Lecture 7 in the
case of curves. More precisely, for Statement 1, we consider the constant map from
a compact Riemann surface to a point. In such a case, it amounts to the purity and
the polarizability of the global de Rham cohomology of a polarized pure twistor
D-modules, since Hard Lefschetz is tautological. The proof follows the same lines
as that of Zucker [Zuc79] for variations of polarized Hodge structures.

(1) Proof of Statement 2 in the case of curves: put together the theorems in
Lectures 8.b and 9.

(2) Proof of Statement 1, local arguments: Comparison between the holomor-
phic L2-complex and the L2-complex for a tame harmonic bundle on a
punctured Riemann surface.
• Introduce the holomorphic L2-complex and the L2-complex, and state

that the natural inclusion is a quasi-isomorphism (first with λ fixed,
and then with parameters in Cλ). Reference: [Sab05, §§6.2.a, 6.2.b],
[Moc07, §§20.2.1, 20.2.2].
• Explain the Dolbeault lemma for a singular Hermitian line bundle

[Zuc79].
• Sketch the proof of the quasi-isomorphism property by means of the

norm estimates. Reference: [Moc07, §20.2.2] (see also the regular case
of [Moc11, §§5.1, 5.2], and also [Sab05, §§6.2.b–6.2.f] for a proof of a
different nature).

(3) Proof of Statement 1, global arguments: Comparison between the coho-
mology of a polarized pure twistor D-module and the space of L2-harmonic
forms. References: [Zuc79], [Sab05, §6.2.g], [Moc02, §20.2], [Moc11, §18.2].

Lecture 11: Tame harmonic bundles in arbitrary dimension. This lecture is necessarily
very sketchy. It aims at giving the main definitions [Moc07, §19.1]. Explain the
statements of the following two theorems, and a few steps of their proofs:

(1) [Moc07, Th. 19.6]: Tame harmonic bundles are in one-to-one correspon-
dence with polarized pure twistor D-modules of weight 0. Make clear the
statement with support on a closed irreducible analytic subset Z of the
complex manifold X. Survey [Moc07, §§19.2-19.5] and insist on [Moc07,
§19.6].

(2) Semi-simple local systems on the complement of a normal crossing divisor D
in a projective manifold X are in one-to-one correspondence with purely
imaginary tame harmonic bundles.

For the proof, two possible approaches depending on the speaker’s taste:
• Follow [Moc07, §§22.1, 22.3] for the “easy” direction, and [Moc07,

§25.5] for the other direction, relying on a method of Jost-Zuo [JZ97],
• or give indications on the proof explained in [Moc09b], that will be

taken up in the wild case in Lecture 17.

Thursday: Wild twistor D-modules and the decomposition theorem for
them. The lectures aim at explaining how twistor D-module theory is able to
overcome the drawback of Hodge theory of being restricted to the tame setting,
in order to treat possibly irregular holonomic D-modules. Compared to the tame
setting, the new phenomenon is the Stokes phenomenon.
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Lecture 12: Polarizable wild twistor D-modules. This lecture is the wild analogue of
Lecture 7.

First, it aims at explaining the modification, obtained by adapting an idea of
Deligne, that is necessary to extend the definition of regular twistor D-module to
the wild (i.e., irregular) case. One strengthens the notion of strict specializability
with respect to a holomorphic function by applying it to all possible locally twists
by pullbacks of meromorphic connections in dimension one. The first part of the
lecture explains this construction for R-modules and R-triples.

References: [Sab09, §§2.1–2.4] and [Moc11, Chap. 22].
One can then define the notion of polarizable wild twistor D-module, and men-

tion the basic properties in a way similar to what is done for regular twistor
D-modules.

References: [Sab09, §3] and [Moc11, §17.1].
State the following:
Wild Statement 1 (decomposition theorem with respect to a projective mor-

phism): The decomposition theorem for polarizable pure wild twistor D-modules
(Hard Lefschetz theorem, Riemann bilinear relations).

Indicate that the reduction steps to the case of curves are similar to those of the
tame case (Lecture 8.a). The case of curves needs further refinements (Lectures 14
and 15). Reference: [Moc11, Chap. 18].

Lecture 13: Irregular singularities in dimension one. This lecture starts by recalling
the formal and asymptotic theory of meromorphic flat bundles on the disc with
pole at the origin. It introduces the notions of irregular value, formal monodromy,
associated nilpotent endomorphism, and Stokes structure, and states the Riemann-
Hilbert-Birkhoff correspondence.

Reference: [Mal91, §§IV.1–3], in particular, Theorems (2.2) and (2.3).
Show how the RHB correspondence enables one to construct deformations of

flat bundles by multiplying the irregular values by the same positive number T and
otherwise keeping the Stokes structure fixed.

Reference: [Moc11, §4.5.2] in the particular case where the function T is a fixed
positive number.

In order to develop a similar theory with the parameter λ, the strict specializ-
ability property with ramification and exponential twist considered in Lecture 12
proves important. One can state and possibly sketch a proof of [Sab09, Prop. 4.5.4].

State the Riemann-Hilbert-Birkhoff correspondence with the parameter λ.
References: [Moc11, §4.3] but only consider the one-variable case.

Lecture 14: Wild harmonic bundles on curves. This lecture focuses on a few funda-
mental results needed for passing from the tame case to the wild case in the proof of
the decomposition theorem in dimension one, that will be done in the next lecture.

(1) Extend the definition of a tame harmonic bundle on a curve (Lecture 8.b)
to that of a wild harmonic bundle (Definition 7.1.4 in [Moc11] in the case
of curves).

(2) State the norm estimate of [Moc11, Prop. 8.1.1] and sketch the proof.
(3) Show rapid decay of harmonic forms [Moc11, §§8.1, 8.2].
(4) State without proof Wild Statement 2 for curves (see the statement and

details in the Friday lectures), needed in the next lecture.

Reference: [Moc11, Chap. 8].

Lecture 15: Proof of Wild Statement 1 in the case of curves. This lecture ends the
proof of Wild Statement 1 by considering the case of the constant map on a smooth
compact Riemann surface. The arguments are given in [Moc11, §18.2], where one
will follow and try to explain the references therein, in particular concerning the
extension Q•.

When needed, one will take for granted Wild Statement 2, as analyzed in the
lectures on Friday, in the case of curves.
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Friday: The Kobayashi-Hitchin correspondence for meromorphic flat
bundles. The aim of the lectures is to explain the proof of

Wild Statement 2: On a smooth projective variety, semi-simple holonomic
D-modules are in one-to-one correspondence with polarizable purely imaginary wild
twistor D-modules of weight 0 (Kobayashi-Hitchin correspondence).

The combination of Wild Statements 1 and 2 gives a solution to Kashiwara’s
conjecture.

Lecture 16: Deligne-Malgrange lattices and purely imaginary wild harmonic bundles.
We expect this lecture to be an exposition of the paper [Moc09c]. Explain the
notion of (good) Deligne-Malgrange lattice. State the characterization of semi-
simple meromorphic flat bundles in terms of the existence of a pluri-harmonic metric
[Moc09c, Th. 3.4]. Details for the latter will be given in Lecture 17.

In higher dimensions, [Moc11], starting from [Moc09a], solves jointly both a
conjecture of Sabbah in the projective setting and the conjecture of Kashiwara for
possibly irregular holonomic D-modules. In this lecture, one will omit the solution
of the conjecture of Sabbah by relying on the independent proof given by Kedlaya
[Ked10, Ked11], which allows to focus only on the analytic and twistor aspects
of the Stokes phenomenon. Therefore, instead of the outline of the proof in the
introduction, refer to [Ked11, §8.2] for Theorem 2.12 in [Moc09c].

On the other hand, if time permits, explain the approach of Mochizuki as outlined
in the introduction of [Moc09c].

Lecture 17: Wild harmonic bundles and semi-simple meromorphic flat bundles. This
lecture gives details on the Kobayashi-Hitchin correspondence for meromorphic flat
bundles, that is, on the proof of the theorem stated in Lecture 16, which corresponds
to [Moc11, Th. 16.2.4]. This is the wild analogue of Point (2) in Lecture 11.

The aim of this lecture is thus to explain the content of [Moc11, Chap. 16]. As
indicated in Lecture 16, one will take the solution of the conjecture of Sabbah (and
its generalization to Deligne-Malgrange lattices) for granted, and thus omit the
proof of [Moc11, Th. 16.2.1].

Further reading: [Moc09b], [Moc21].

Lecture 18: Wild harmonic bundles and wild pure twistor D-modules. This lecture is
the wild analogues of Point (1) in Lecture 11. It is divided in the two sub-lectures
18.a and 18.b, each of 45mn.

Lecture 18.a: Essential surjectivity. The main result of the lecture is the essential
surjectivity of the functor. State the correspondence of [Moc11, §19.1]. One should
omit the refinement A-wild during the lecture.

Reference: [Moc11, §19.2].

Lecture 18.b: Full faithfulness. The main result of the lecture is the full faithfulness
of the functor considered in Lecture 18.a, and the end of the proof of the conjecture
of Kashiwara’s conjecture.

Reference: [Moc11, §§19.3–4].
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alg-geom/9705006, 1997.

[Sim08] , “A weight two phenomenon for the moduli of rank one local systems on
open varieties”, in From Hodge theory to integrability and TQFT tt*-geometry, Proc.

Sympos. Pure Math., vol. 78, American Mathematical Society, Providence, RI, 2008,

p. 175–214.
[Sim21] , “The twistor geometry of parabolic structures in rank two”, arXiv:

2110.12300, 2021.

[WY21] C. Wei & R. Yang – “Cohomology of semisimple local systems and the decomposition
theorem”, arXiv:2109.11578, 2021.

[Wil17] G. Williamson – “The Hodge theory of the decomposition theorem”, in Séminaire
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