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Program We intend to address parts of the following topics which �t together
in the context of learning generative models.

1. Optimal transport and Wasserstein spaces

We will introduce optimal transport and its regularized, unbalanced, and
multimarginal variants. This includes the study of the geometry of Wasser-
stein spaces, geodesics and their Riemannian-like structure as exhibited
by the Benamou�Brenier functional. This will lead us to the notion of
Wasserstein gradient �ows which recently attracted interest in the theory
of machine learning. We will also consider related novel developments
such as the Stein variational gradient descent and neural optimal trans-
port. Last but not least, computational aspects will be addressed.

2. Generalized normalizing �ows

A uni�ed framework to (di�usion) normalizing �ows and variational au-
toencoders can be given via Markov chains. More precisely, stochastic nor-
malizing �ows are a pair of Markov chains ful�lling some properties and
many state-of-the-art models for data generation �t into this framework
and enables the coupling of both deterministic layers as invertible neu-
ral networks and stochastic layers as Metropolis-Hasting layers, Langevin
layers, variational autoencoders and di�usion normalizing �ows in a math-
ematically sound way. Applications in inverse problems in imaging will be
addressed.

3. Mean �eld games

Mean-�eld games/control study the behavior of a large number of rational
agents moving in the Euclidean spaces and recently also on on Riemannian
manifolds. The formulation of the mean-�eld game Nash equilibrium, the
equivalence between the PDE system and the optimality conditions of
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the associated variational form will be discussed as well as the design of
proximal gradient method for variational mean-�eld games.
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