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Quantum field theory (QFT) originated in the attempt to define a relativistic quantum mech-
anical theory for elementary particles in the 1940s and 1950s. Today, the term is used to describe
the calculational framework for a wide range of phenomena is physics—from elementary particles
to condensed matter physics—based on path integrals, which are measures on spaces of gener-
alised functions. The mathematical construction and analysis of such measures is also known as
Constructive QFT.

This Arbeitsgemeinschaft will begin by covering some background material and then explore
some of the advances made in recent years that are based on the perspective of stochastic PDEs
(SPDE?s) for which the QFT measures are stationary measures.

The link between QFT and SPDE was first observed by the physicists Parisi and Wu [PW8&1]],
and the connection is known as Stochastic Quantisation. The study of solution theories and
properties of solutions to these SPDEs derived from the Stochastic Quantisation procedure has
stimulated substantial progress of the solution theory of singular SPDE, especially the invention
of the theories of regularity structures [Hail4b] and paracontrolled distributions [GIP15]] in the
last decade. Moreover, Stochastic Quantisation allows us to bring in more tools including PDE
and stochastic analysis to study QFT.

The focus of this Arbeitsgemeinschaft will be QFT models such as the ®* and Yang-Mills
models as examples to discuss stochastic quantisation and SPDE methods and their applications
in these models. Other models such as Fermionic models, sine-Gordon, and exponential in-
teraction will also be discussed to some extent. We will introduce the key ideas, results and
applications of regularity structure and paracontrolled distributions, construction of local solu-
tions and global solutions of SPDEs corresponding to these models, and use the PDE method to
study some qualitative behaviors of these QFTs, and connections with the corresponding lattice
or statistical physical models. We will also discuss some other topics of QFT, such as Wilsonian
renormalisation group, log-Sobolev inequalities and their implications, and various connections
between these topics and SPDEs.

Format: The Arbeitsgemeinschaft will have 8 blocks: Monday morning, Monday after-
noon, Tuesday morning, Tuesday afternoon, Wednesday morning, Thursday morning, Thursday



afternoon, Friday morning.

General information: ‘Arbeitsgemeinschaft’ means ‘study group’. All lectures at the
Arbeitsgemeinschaft are taught by participants with the goal of shared learning through active
participation. All applicants must volunteer to give lectures when applying to the Arbeitsge-
meinschaft (see below). Usually there will be more attendees than lectures.

Information on how to apply can be found at this website.

Below we outline 8 subjects to be discussed in the 8 time blocks. Each subject is divided
into several smaller topics. We may not be able to cover all topics, so the final list will depend
on participant interest.

1 Introduction to Euclidean QFT

Goal: Introduction to Euclidean quantum field theory, with some examples, including the Gaus-
sian free field and the <I>‘2‘ model in finite volume.

1.1 Quantum mechanics to path integrals: Feynman—Kac formula

Brief introduction to the quantum mechanical harmonic oscillator, and the ground state trans-
formation that takes the harmonic oscillator to the Ornstein—Uhlenbeck semigroup. Discuss the
Feynman—Kac formula with the goal to arrive at [GJ87, Theorem 3.4.1].

References: [GJ87, Chapters 1-3]

1.2 Reflection positivity and the Osterwalder-Schrader axioms

Osterwalder—Schrader axioms for QFT, for example as presented in [[GJ87, Chapter 6], with focus
on the reflection positivity property. In particular, the construction of the Hamiltonian [GJ87,
Theorem 6.1.3]. Example that lattice QFT is reflection positive, and the analogy between the
transfer matrix for lattice models and the quantum mechanical time evolution, see [GJ87, p. 96].

Reference: [GJ87, Chapter 6]. Further reference: [Sim74, Chapter 2]

1.3 The massive Gaussian free field

Generalities about Gaussian measures in infinite dimensions, including the integration by parts
formula and the Wick theorem for Gaussian fields. Fock space representation of the canonical
commutation relations and relation to chaos decomposition of the Gaussian L?> space.

Define Gaussian free field on R¢ with mass m > 0, which is a model for free (i.e. non-
interacting) scalar boson. Sketch the validity of the Osterwalder—Schrader axioms.

References: [Sim74, Chapter 3], [Hail6a]]. Further references: [NN18| Chapter 4], [SheQ7].
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1.4 The d)‘z‘ measure in finite volume

Construction of the CI>‘21 measure in finite volume via Nelson’s argument, following for instance
[Hail6a, Section 8]. This includes: showing that as one removes the ultraviolet cutoff, i.e.,
the small scale regularisation, the Wick renormalised quartic interaction has a limit in L? (see
also [Sim74, Chapter 5]); the introduction of hypercontractivity of the Ornstein—Uhlenbeck
semigroup; Nelson’s argument, i.e., the density of the CI>‘21 with respect to the Gaussian free field
measure is integrable.

References: [Hail6al, Section 8]. Further references: [Sim74, Chapter 5], [Dim11} Section 13.4]

2 SPDEs in the Da Prato—Debussche regime

Goal: Introduction of the formal procedure of Parisi—-Wu stochastic quantisation, which is a
stochastic gradient flow (SPDE) with a Euclidean QFT model as its stationary measure. The
Da Prato—Debussche argument [DPDO3]] for local solutions of the stochastic quantisation of <I>‘2‘.

2.1 Functional setting and white noise

Introduction of the basic functional setting for SPDEs, such as Holder—Besov spaces for distribu-
tions, Young’s theorem for multiplying distributions. Define space-time white noise, and discuss
its scaling and regularity properties.

References: [[CW17, Section 1 and 2], [Hail4al Section 2]

2.2 Linear stochastic heat equation

Discussion of the linear stochastic heat equation with additive space-time white noise, including
the classical Schauder estimates, existence and uniqueness of initial value problem, stationary
solution, regularity (and singularity), and Gaussianity of its solution. In particular, show that if
the (Euclidean) space dimension is d > 2, then the solution to the linear stochastic heat equation
exists only in the sense of distributions, and why this causes problem in interpreting the meaning
of the solution to nonlinear SPDEs such as the dynamical (D‘g model.

Introduce nonlinear perturbations to stochastic heat equation, and discuss scaling, and mean-
ings of subcritical, critical and supercritical regimes.

References: [CW17, Section 2]

2.3 The Da Prato-Debussche argument

The Da Prato—Debussche argument [DPDO3]] for local solutions of the stochastic quantisation of
CDg. In particular, discussion of Wick renormalised powers of the Gaussian solution to the linear
stochastic heat equation, including moment calculations and convergence in suitable Holder—
Besov spaces. Then combine these with classical Schauder estimates and Young’s theorem to
construct local-in-time solution, by a fixed point argument.



Finally, discuss why the Da Prato—Debussche argument does not apply to stochastic quant-
isation of @3,

References: [DPDO3]], [CW17, Section 2 and 3], [Hail4a, Section 3]

3 Global solution to stochastic quantisation of ®3

Goal: Global-in-time solutions for the dynamical CI>‘21 model on the torus and the “coming down
from infinity” property. Extension to infinite space R? using weighted norms. Constructions of
the CI>‘21 measure via SPDEs.

3.1 Global solutions and coming down from infinity, 1.

Following [MW17/b, Section 3], recall standard results on embeddings and interpolations for
Besov spaces and recall multiplication results for Besov spaces. Discuss L? a priori estimates
for stochastic quantisation of (I>‘2l on torus following [MW17b, Section 6], including discussion
on the proof of L” energy identity, and bounds on various other terms making use of the —®3
term. Briefly discuss the extension to entire space R? using weighted norms.

References: [MW17b], [GH19].

3.2 Global solutions and coming down from infinity, II.

Discuss the approach by Gubinelli and Hofmanova [GH19] on global solutions, focusing on
d = 2. Recall Littlewood—Paley blocks, and introduce localization operators and their bounds.
Introduce the decomposition of solution into singular and regular parts. Prove uniform bounds
on solutions to regularised equations driven by &, which is regularised white noise, following
[GH19, Appendix A]. Pass the estimates to limit as € — 0, using compactness argument,
following [[GHI19, Section 4 and 6]. Prove the “coming down from infinity” property for @‘2‘
following [GH19, Section 9].

References: [MW17b], [GH19]

3.3 Tightness via energy method

Discuss another approach based on tightness to construct the (Dg measure following [[GH21].
Introduce the lattice approximation of the (13‘21 measure, and the corresponding lattice dynamic
with stationary solution. Point out the relation of lattice approximation with reflection positivity.
Then introduce the L? energy method. Decompose the solution into singular and regular parts,
and demonstrate the uniform estimates in [GH21l Section 4] by simplifying the arguments for
d =3 theretod = 2.

References: [[GH21]|



aye 4
3.4 Integrability of @7

Discuss sub-Gaussian tail of CD‘Z‘ via the Hairer—Steele argument [HS22[]. One particular goal
of stochastic quantisation is to obtain properties of the measure from the associated stochastic
dynamics. Integrability of certain distributional norms where already studied in [MW17b]] and
[GH21]| but is only with the paper of Hairer—Steele [HS22[] that the optimal result with better-than
Gaussian bounds have been established.

Reference: [HS22].

4 More specialized topics in d = 2

Goal: Extension of the discussion on CD‘Z‘ and other topics and models in two Euclidean space
dimensions.

4.1 More applications of the Da Prato—Debussche argument

Discuss additional examples where the Da Prato—Debussche argument is applicable, such as the
stochastic quantisation of sine-Gordon model in 2D in the regime 5> < 4r following [HS16]
assuming the regularity of imaginary Gaussian multiplicative chaos, the parabolic Anderson
model in 2D following [HL15l], as well as a recent simple construction of solution to dynamical
CI);‘ equation by [JP21]] using a multiplicative transformation (you may only discuss local solution
here).

References: [HS16], [HL15]], [JP21]].

4.2 Kac-Ising model

Renormalized singular SPDEs describe certain non-linear fluctuations of microscopic statistical
mechanics systems. In this context the (infinite) renormalization constants have a precise mo-
tivation as effects living at a different scale. As an example, discuss the Glauber dynamics of
Kac-Ising model following the work of Mourrat and Weber [MW17al], and derivation of the
(Dg equation in the limit. Explain the interpretation of renormalisation constant in this physical
context.

References: [MW17a, Section 2], Lectures by H. Weber.

4.3 Perturbation theory of @3

Discuss properties of the ¢>§ measure via the SPDE approach. Osterwalder—Schrader axioms.
Integration by parts formula and the hierarchy of Dyson—Schwinger equations for correlation
functions. Discuss bounds on perturbation theory errors following [SZZ21]].

References: [[GH21,SZZ21]]


https://www.youtube.com/watch?v=VCyUqLWVDXc

4.4 Elliptic stochastic quantisation

Discuss elliptic stochastic quantisation, following mainly [ADVG20,/ADVG21]]. This is a variant
of the parabolic situation considered so far in this AG. Interestingly the proof of the corres-
pondence between the measure and the SPDE requires here the use of arguments involving
supersymmetry and superspaces (i.e. spaces with non-commuting coordinates). The key argu-
ment was first discovered by Parisi—Sourlas in the *80.

References: [ADVG20,/ADVG21]]. Further references: [GH19, BDV21]]

4.5 Hyperbolic stochastic quantisation

Besides parabolic and elliptic stochastic quantisation (discussed in Sect. [4.4)) another variant is
the one provided by certain hyperbolic Hamiltonian equation. This observation also connects
with the vast literature on Hamiltonian PDE with random initial data and in particular initial
data distributed as the QFT measures [BDNY22| Section 1]. Discuss global solutions of the
hyperbolic stochastic quantisation equation in the case of the ¢3 QFT following [GKOT?22].

References: [[GKOT22]. Further references: [BDNY22, Section 1], [GKO18]]

4.6 Gaussian multiplicative chaos and the Liouville model

Review basic geometric notions such as metrics, Gauss curvature, conformal transformation and
conformal factor. Define Gaussian multiplicative chaos for Gaussian free fields, state the main
result on its convergence and basic properties such as shifting and negative moments.

Introduce the Liouville action functional on the Riemann sphere, vertex operator insertions.
Under Seiberg assumptions, prove convergence of correlation functions of Liouville conformal
field theory (following [DKRV 16, Theorem 3.2 and Lemma 3.3]).

References: [DKRV 16, Section 2 and 3], [LRV15]

4.7 Grassmann or Fermionic models

The Euclidean rotation of theories with Fermions involves algebras of Grassmann fields, as first
observed by Osterwalder—Schrader [[OS73]]. Therefore in order to stochastically quantise such
theories one need to dispose of a stochastic analysis of Grassmann random variables. Discuss
Grassmann stochastic analysis, some Fermionic QFT models and related stochastic differential
equations following [ABDVG22]. With time limitation, we only discuss these on lattices.

In particular, recall algebraic probability space, Grassmann algebras, Grassmann random
variables. Define Dirac operator, and write down the action functionals for several Fermionic
QFT models such as Yukawa model and Gross-Neveu model. Write down their stochastic
quantisation equation on lattice.

Reference: [ABDVG22]. Further reference: [OS73]]



S Introduction to gauge theory

Goal: Introduction to lattice and continuum Yang—Mills theories and their formal relation.
Wilson loop observables, the meaning of mass gap and confinement, etc. Langevin dynamics of
lattice gauge theories.

5.1 Definition of Lattice Yang—Mills theory

Definition of Lattice Yang—Mills model on finite lattice, as a (well-defined) probability measure
on product Lie groups. Discussion of different possible choices of lattice action, such as the
Wilson and Villain actions (heat kernel action). Gauge transformations and gauge invariance
of the model. The meaning of strong and weak coupling regimes. Definition of lattice Wilson
loops and verification that they are gauge invariant observables. Introduce the concepts of mass
gap, confinement, area law, large N factorization.

References: [Sei82], [Chal9bl]. Further references: [[Chal9al,|[Cha21]]

5.2 Continuum Yang-Mills action

Definition of the continuum Yang—Mills action, including connection 1-forms, curvature 2-forms,
and discuss its gauge invariance. Use the Baker—Campbell-Hausdorff formula to show that the
lattice Yang—Mills action approximates the continuum Yang—Mills action. Define Wilson loops
both on lattice and in continuum (for smooth connections).

Introduce the SPDE from stochastic quantisation or Langevin dynamic for 2D Yang—Mills,
in terms of gauge covariant derivatives as well as in the coordinate form. Discuss the gauge
covariance of the SPDE on the formal level. Explain the source of non-parabolicity. Introduce
the DeTurck term which leads to a parabolic SPDE.

References: [Sei82], [CCHS22, Section 1]

5.3 Lattice Langevin dynamic of the Yang-Mills model

For gauge group SO (N), introduce the Langevin dynamic of the Lattice Yang—Mills model. This
includes finding the gradient on Lie groups and writing Lie group valued Brownian motions
in terms of Lie algebra valued Brownian motions, and showing gauge covariance of the lattice
Langevin dynamic. Time permitting, derivation of the Makeenko—Migdal / Dyson—Schwinger /
master loop equations for lattice Wilson loops.

References: [SSZ22]

5.4 Applications of lattice Langevin dynamic

Discuss further topics of the lattice Langevin dynamic: the log-Sobolev inequality and Poincaré
inequalities at strong coupling and its consequences, such as uniqueness of infinite volume lattice
Yang—Mills measure, large N factorization / deterministic limit, and mass gap.

References: [SZZ22]



6 Regularity structures

Goal: Introduction to the theory of regularity structures and construction of local solution to
stochastic quantisation of (I>‘3l via regularity structures.

6.1 Basic concepts and reconstruction theorem

Introduce basic concepts in regularity structures, including regularity structures, models, mod-
elled distributions. Perhaps give an example of polynomial regularity structure. Statement and
proof of the reconstruction theorem.

References: [FH14] (2nd edition, download here). Further references: [[Hail5, Hail6b]

6.2 Fixed point problem in the space of modelled distributions

Discussion how to formulate and solve a fixed point problem in the space of modelled distribu-
tions. Multiplication theorem. State the Schauder theorem in the space of modelled distributions
which are important for solving the fixed point problems. Admissible models.

References: [FH14, Hail5]

6.3 Stochastic quantisation of @}

Demonstrate the application of regularity structures using the example of the local solution theory
of the stochastic quantisation of d>‘3‘. Start by stating the main result, including the introduction
of renormalisation constants of orders é and log(€).

Explain how to associate a regularity structure to such a given SPDE. Then describe the
renormalisation group. Discuss the modelled distribution expansion for the solution, and derive
the renormalised equation.

References: [Hail5, Hail6b]

6.4 Convergence of the renormalised models

We then prove convergence of the renormalised models. This includes recalling Wiener chaos,
equivalence of moments, and introducing necessary diagrammatic tools. Demonstrate how the
renormalisation constants introduced into the SPDE help cancel the divergences.

References: [Hail5, Hail6b]

7 Dynamics of d = 2 gauge theory

Goal: Discuss the construction of Langevin dynamic for 2D Yang-Mills based on the paper
[CCHS22||. Understand the construction of state space, local solution theory, and idea of proving
gauge covariance.


https://www.hairer.org/notes/RoughPaths.pdf

7.1 Construction of the state space

Discuss the construction of the state space. In particular, explain the problem with standard
Besov—Holder spaces. Then we start from “simple objects” which are functionals on line
segments (in particular Holder continuous functions that can be integrated along line segments);
impose suitable norms on these functionals; and then take completion under these norms.
Explain why the completion can be embedded in the standard Besov—Hdolder spaces with negative
regularities. Briefly mention that gauge transformations can be defined on this state space, and
that the quotient space is completely metrizable.

References: [[CCHS22| Section 3 and 4], [Che2?2]]. Further Reference: Hairer’s lectures

7.2 Local solution of Yang-Mills SPDE in 2D

Discuss Kolmogorov theorem in this state space, and the fact that Gaussian free field and solution
to Stochastic heat equation belong to this state space — this is important for eventually showing
that the solution to the Yang—Mills SPDE will belong to this state space.

Discuss local solution theory of the Yang—Mills SPDE, as an application of regularity
structures. In particular, demonstrate the relevant trees associated to the SPDE, and derive
the renormalised equation. One consequence from application of regularity structures is that
the solution is the distributional solution to the stochastic heat equation plus an almost Lipschitz
part; in particular this solution lies in the state space.

References: [[CCHS22| Section 6 and 7], [Che22]]

7.3 Gauge covariance of solution in 2D and general discussion on 3D

Discuss why a finite shift of the renormalisation constant will lead to gauge covariant limit, and
how to exploit symmetries of the equation in this argument.

Make some general discussion on the challenges in 3D, such as increasing number of trees,
necessity of using discrete symmetries to rule out certain a priori possible renormalisation terms,
and the motivation for the construction of a new nonlinear state space.

References: [[CCHS22| Section 6 and 7], [[Che22]]. Further reference: Hairer’s lectures

8 Wilsonian renormalization group

Goal: Some applications of the Wilsonian renormalization group approach to QFT and SPDE.
Wilsonian renormalization group keeps track of how QFT or SPDE changes under variation of
scales.

8.1 Polchinski renormalization group equation

Consider QFT models which are Gaussian free fields perturbed by potentials V, and introduce
scale-dependent potentials V;. Derive the Polchinski renormalization (semi)group equation for
the density exp(V;) and for the potential V;.


https://www.youtube.com/watch?v=x87AY1fk3SM
https://www.youtube.com/watch?v=WuEjrgcHuKY

Apply Polchinski’s RG equation either to ®* model or to sine-Gordon model. In the case of
®* model, write the potential as a formal power series expansion and derive the Polchinski flow
(system of) equations for the components in this expansion. In the case of sine-Gordon model,
introduce the Fourier expansion (or Mayer expansion) following [BK&7] or [BB21]], and write
the flow equation in terms of this expansion.

References: [Pol84, BK&7, BWSES]|

8.2 Stochastic control approach

Discuss the variational representation of the renormalised potential in terms of the Boué-Dupuis
formula. Show tightness of the <I)§ measure in finite volume using this approach. Possibly also
discuss the sine-Gordon model below 4.

References: [BG20, Bar22]

8.3 Log-Sobolev inequality

Introduce the Log-Sobolev inequality. Discuss the classical Bakry—Emery criterion, and why it
fails to apply to sine-Gordon, CI)‘Z1 and CI)‘3‘. State and prove the multiscale Bakry-Emery criterion
[BB21, Theorem 1.2].

Apply the multiscale Bakry—-Emery criterion to the sine-Gordon model in the regime 8 < 67
as in [BB21]]. This includes introducing the Fourier representation of the scale-dependent
potential V and bounding the components in this representation, at least for 8 < 4x. Possibly
mention the extension of these results to the ®* model [BD22].

References: [BB21,[BD22]. Further reference: Bauerschmidt’s lectures

8.4 Flow equations for dynamics

Discuss the Wilsonian renormalisation group flow approach to stochastic PDEs with additive
noise and polynomial non-linearity, following [Duc22] [Duc21, Section 1, 2, 3]. This is a new
approach to this class of singular SPDEs using the Wilsonian renormalization group and the
Polchinski flow equation.

In particular, introduce the microscopic and the rescaled, i.e. macroscopic equations. in-
cluding relevant / irrelevant coefficients. Introduce regularisation and the fixed point problem,
decomposition of kernel and solution, “effective force functional” which depends on the scales,
and the formal power series for the effective force functional. Explain that the effective force
satisfies a flow equation (with “time” being the running scale), and how the effective force
coeflicients in the power series expansion are constructed recursively using the flow equation.

Discuss the “renormalization problem”, namely, uniform bounds on the effective force coef-
ficients and existence of their limits. Outline the ideas of the proof to these uniform bounds.

Reference: [Duc22]. Further references: [Duc21]], [Kupl6]
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