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1. Introduction

The Hitchin system [25], introduced in 1987, has turned out to be a versatile construction of
algebraic completely integrable Hamiltonian systems, which has been related to most known
integrable systems in algebraic geometry and mathematical physics see e.g. [14]. It has two
outstanding applications in such distant fields as the quantum field theory explanation of the
geometric Langlands program in the work of Kapustin-Witten’s [28], and Ngô’s proof [37] of
the fundamental lemma in the Langlands program in number theory.

The Hitchin system is a proper map

h := Mn
Dol → A(1)

from the moduli space of certain Higgs bundles - pairs (E, Φ) of a rank n vector bundle E and
a Higgs field Φ : E → E ⊗ KC on a smooth complex projective curve C- to the Hitchin base,
the affine space

A := H0(C; K) × · · · × H0(C; Kn).

The total space Mn
Dol of the Hitchin system carries a natural complex algebraic symplectic

two form, with respect to which the components of h Poisson commute; additionally dim(A) =
dim(Mn

Dol)/2, which together imply complete integrability.
In fact, the holomorphic symplectic form is part of a hyperkähler structure on Mn

Dol,
with Mn

Dol representing the complex structure I. While in complex structure J there is a
different moduli space interpretation, namely Mn

B the character variety of representations of
the fundamental group of C into GLn. These various moduli space interpretations go under
the name of non-Abelian Hodge theory which attaches, in particular, the Dolbeault and Betti
GLn-moduli spaces to C, see [24, 42]. From the perspective of non-abelian Hodge theory we
have a canonical diffeomorphism

Mn
Dol

∼= Mn
B,(2)

which underlies the change of complex structures in the hyperkähler metric on Mn
Dol. By

introducing certain twistings we can make sure that Mn
Dol and Mn

B are both smooth of
dimension dn. The latter is an affine variety, but the former is only quasi-projective, with
large projective subvarieties (in the fibers of the proper Hitchin map h). By (2) they share
their cohomology rings

H∗(Mn
Dol;Q) ∼= H∗(Mn

B;Q).(3)
1
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Deligne’s [12] mixed Hodge structure on their cohomology however does not agree. While the
weight filtration on H∗(Mn

Dol;Q) is pure, on H∗(Mn
B;Q) it is not.

In fact, the weight filtration

W0 ⊂ · · · ⊂ Wi ⊂ · · · ⊂ W2k = Hk(Mn
B;Q)(4)

on H∗(Mn
B;Q) can be studied by arithmetic means [17] and was conjectured in loc.cit. to

satisfy a ”Curious Hard Lefschetz” theorem, that the Lefschetz map defined by capping with
a certain power of the Higgs-Kähler class α ∈ H2(Mn

B;Q) of (curious) weight 4

Ll : GrW
dn−2lH

i−l(Mn
B;Q)

∼=→ GrW
dn+2lH

i+l(Mn
B;Q)

x 7→ x ∪ αl
(5)

is an isomorphism, which is not at all expected from a smooth affine variety.
There is a filtration on the cohomology of any proper map which satisfies a relative Hard

Lefschetz theorem just like (5). This is the perverse Leray filtration, originating in the decom-
position theorem of Beilinson, Bernstein, Deligne and Gabber [4], and carefully studied in [7],
which in the case of the Hitchin map looks like (after certain shifts):

P0 ⊂ · · · ⊂ Pi ⊂ · · · ⊂ Pk = Hk(Mn
Dol;Q)(6)

Motivated by explaining the Curious Hard Lefschetz theorem, as the relative Hard Lefschetz
theorem satisfied by the perverse filtration, the following conjecture was made in 2012 in [8]:

Conjecture 1.1. After suitably reindexing the filtrations, we have the ”P = W” conjecture

P∗(H∗(Mn
Dol,Q)) = W∗(H∗(Mn

B;Q))

under the isomorphism (3) induced by the non-abelian Hodge theorem (2).

The original paper [8] proved this for n = 2 using the detailed knowledge on the cohomology
ring of H∗(M2

Dol;Q). Mellit proved the curious Hard Lefschetz theorem (5) for every n in [34]
in 2019. More recently in 2022 using techniques of algebraic geometry of compact hyperkähler
varieties [10] proved the conjecture for every n for genus 2 curves C.

Finally we list a few ramifications of the P = W conjecture from the literature. For exten-
sions of P = W conjecture to parabolic cases and Hilbert schemes see e.g.[39]. For applications
of wild analogues of the P = W conjecture and the perverse filtration on H∗(Mn

Dol;Q) to the
study of torus link invariant and certain BPS invariants of Calabi-Yau 3-folds see [13] and the
references therein. Extensions of P = W conjectures for compact hyperkähler varieties were
studied in [38]. Analogues of P = W for mirror symmetry appeared in [29].

Most recently two complete proofs of the P = W Conjecture 1.1 appeared in 2022. One by
Maulik–Shen [32] and one by Hausel–Mellit–Minets–Schiffmann [21]. The aim of the Arbeits-
gemeinschaft is to understand the P = W Conjecture 1.1 and these two recent proofs.
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2. Day 1: Character varieties, Higgs moduli spaces and the P = W conjecture

2.1. Lecture 1: Recollections on Hodge theory, examples. The aim of this first lecture
is to serve as a reminder of the basics of the Hodge theory of complex algebraic varieties
(Hodge decomposition and filtrations, weight theory, mixed Hodge polynomials, (standard)
Hard Lefschetz theorem for smooth projective varieties, . . . ). One standard reference is [45].
As examples, one could (for instance) treat in details the case of varieties of the form (C∗)n ×
Cm.

2.2. Lecture 2: Recollections on perverse filtrations, examples. The aim of the second
lecture is to recall the definition and properties of the perverse filtration P•H∗(X,C) induced
on the cohomology of a smooth quasiprojective variety X by a proper morphism f : X → Y

(in the cases at hand, Y will actually be an affine space). As a preliminary step, recall
briefly the notions of perverse sheaves and the decomposition theorem of Beilinson-Bernstein-
Deligne-Gabber, as in [4]. Recall also the notion of a Lefschetz structure, its relation to
finite-dimensional sl2-representations (as in [21, Section 8.1]), and the relative Hard Lefschetz
theorem (as in [4, Thm. 5.4.10] or [7, Thm. 2.1.1, 2.1.4, 2.3.3, Sections 4.5, 4.6]), which is
used the proof of P = W in [21].

Introduce and give the basic properties of the sheaf-theoretic variant of the perverse degree
of a cohomology class c ∈ H∗(X,C) –the strong perversity– which plays a crucial role in the
approach of Maulik-Shen (see [32, Section 1]).

2.3. Lecture 3: The Higgs moduli space, the Hitchin map and the perverse fil-
tration. Introduce the moduli space MD

r,d of stable Higgs bundles of rank r and degree d on
a smooth projective complex curve C, which is a smooth quasi-projective variety. Give the
examples in the cases r = 1 or g = 1. Describe Mr,d, via the Beauville-Narasimhan-Ramanan
correspondence, as a moduli space of one-dimensional sheaves on the surface T ∗C, see e.g.
[3]. Define the Hitchin morphism µ : MD

r,d → A =
⊕r

i=1 H0(C, Ω⊗i
C ), state its basic properties

(such as being proper, being an abelian fibration over a suitable open subset of A) and explain
why it can be viewed as a partial compactification of the cotangent T ∗Nr,d of the moduli space
of stable vector bundles of rank r and degree d. The reference [16] could be useful here.

2.4. Lecture 4: The character variety and its mixed Hodge structure. Introduce
the (twisted) character variety MB

r of a genus g surface Σg associated to the group GLr and
a primitive rth root of unity. Prove that it is a smooth affine variety, and gives examples
when r = 1 or g = 1, giving its mixed Hodge polynomial in both cases. Mention the SLr

and PGLr-variants. The paper [17] can serve as a guide for all of this. If time, mention the
parabolic variants, following [18].

State the non-abelian Hodge theorem of Corlette and Simpson (see [6], [42]) and observe it
for r = 1 or g = 1. Give the statement of the P = W conjecture and check it in the simple
cases r = 1 or g = 1. Explain that the P = W conjecture implies a ’curious’ form of Poincaré
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duality (and also a curious form of Hard Lefschetz) for the mixed Hodge polynomial of the
character variety.

3. Day 2: Tautological generators for the moduli of Higgs bundles

3.1. Lecture 1: Tautological classes for the moduli of Higgs bundles. We focus on
the case where the rank and the degree are coprime. The main result to explain is that the
cohomology of the moduli of stable Higgs bundles on a curve is generated by tautological
classes, i.e., the classes given by the Künneth components of a universal family, following
Markman [31].

The proof in [31] is via moduli of stable sheaves on a surface, and the intersection theory ar-
gument may be technical. For the presentation, it may be a good idea to start with Beauville’s
proof [2] of a classical theorem of Atiyah–Bott [1] concerning an analogous statement for the
cohomology of the moduli space of stable bundles on a curve where all the details can be
explained. Then give an outline of the proof for the Higgs case [31] following the 2 steps: (1)
explain [31, Theorem 1] which concerns K3 surfaces, (2) explain how a modification for the
K3 case yields the Higgs case [31, Theorem 0.7] via a compactification.

3.2. Lecture 2: Weights for the (Betti) tautological classes. The purpose of this lecture
is two-fold. For the first part, present the construction of the tautological classes for the
character variety, and explain that they are matched with the generators on the Dolbeault
(i.e. Higgs) side via non-abelian Hodge theory. A reference for this is [23] (before Section
6). For the second part, present Shende’s result on the cohomology of a (twisted) character
variety: the cohomology is of Hodge–Tate type and the weight is given by the Chern grading
of the tautological class.

At the end, state that now the P = W conjecture for GLn is equivalent to “perverse =
Chern” for tautological classes on the Dolbeault side.

If there is extra time, review the mixed Hodge structure associated with a simplicial scheme,
focusing on the case of BG. This was used in Shende’s argument.

3.3. Lecture 3: Curious Hard Lefschetz. The aim of the lecture is to give an overview
of Mellit’s proof the Curious Hard Lefschetz (CHL) property of the cohomology of character
varieties, see [34]. The proof is long and relies on many different techniques hence the only
realistic aim is to sketch the different steps of the argument, which roughly consist in :

(1) introducing a parabolic version MB,par
r of the character variety, which involves choosing

one or more points on C along with generic semisimple conjugacy classes at each point,
(2) constructing a stratification of that parabolic character variety into ’cells’ of the form

(C∗)a × Cb, which allows one to deduce a version of the CHL property for MB,par
r

(3) relating the cohomologies of MB,par
r and MB

r to deduce the CHL property for MB
r .
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The second step hinges on the theory of braid varieties (see e.g. [41]) and Seifert surfaces
while the last step uses the (finite) Springer action of the symmetric Sr on the cohomology of
MB,par

r , along with ideas coming from [19].

4. Day 3: Variants of Hitchin moduli spaces

4.1. Lecture 1: Moduli of twisted Higgs bundles. The purpose of the two lectures today
is to introduce two types of Hitchin moduli spaces: (A) moduli of twisted (or meromorphic)
Higgs bundles, (B) moduli of parabolic Higgs bundles. The definition of these moduli spaces
is quite straight forward, so we will focus on why these spaces are useful.

In the first lecture, introduce the moduli space of Higgs bundles twisted by an effective
divisor. Then explain two features of this moduli space:

(1) The decomposition theorem for the twisted Hitchin system is much easier than the
usual case — every simple summand has full support. This is the support theorem of
Chaudouard–Laumon [11], built on the seminal work of Ngô [37]. It would be good
to compare it with [9] which shows that in the untwisted case at least every Levi
subgroup of GLn contributes a support. It would be helpful to explain the idea of the
proof using the case of GL2.

(2) The decomposition theorem of the twisted case can recover the decomposition theorem
for the untwisted case, using the vanishing cycle functor. The reference is [33, Section
4]; for the presentation please feel free to focus only on the sl2-case.

If there is time, explain at the end very briefly, following [33, Section 0.6], that (1) and (2)
yield immediately a proof of the topological mirror symmetry conjecture of Hausel–Thaddeus
[22]. This conjecture was first proven by Groechenig–Wyss–Ziegler by p-adic integration [15].

4.2. Lecture 2: Moduli of parabolic Higgs bundles. We discuss everything under the
assumption D = p; that is, the boundary of the Riemann surface only consists of one point.

Following [21, Section 8.4], discuss the connection between the Poison variety Mn,d (the
moduli of parabolic Higgs bundles without fixing the residue at the punctures) and the usual
Higgs moduli space Mr,d. First introduce these spaces, and then present the details of Propo-
sitions 8.14, 8.15, 8.16, i.e. the trick of taking generic residue at the puncture. The reference
for Proposition 8.14 above is [20, Corollary 1.3.3].

If there is time, mention that the restriction map preserves the perverse filtrations.

5. Day 4: Geometric representation theory techniques

5.1. Lecture 1: Finite and affine Springer theory. The aim of this talk is to pave the
way for the next one (on Yun’s global Springer theory). There are two settings : finite Springer
theory (for a complex reductive group) and affine Springer theory (for the loop group of a
complex reductive group).
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In the finite case, present both the Springer and the Grothendieck-Springer resolutions as
morphisms of stacks Ñ /G → N /G and g̃/G → g/G, and use the smallness of the latter map to
define a Weyl group action on the Springer sheaf. Observe the decomposition of the pullback
of the tautological bundle on the base into a successive extension of line bundles. This is
classical and may be found, e.g. in [5].

In the affine case, introduce the affine Springer fiber (over regular semisimple and topo-
logically nilpotent element is enough) and describe its main geometric properties. Describe
the action of the affine Weyl group on its Borel-Moore homology, following the paper [30],
Section 5.

5.2. Lecture 2: Global Springer theory. Review Yun’s global Springer theory [43, 44].
One may follow the summary of [32, Section 3]; in particular (A,B,C) of Section 3.4. Note
that the vanishing of (B) was not explained in details in [32], which was treated in [44, Lemma
3.2.3]: a toy model for thinking about it is that the first Chern class of the normalized Poincaré
line bundle on C × JC (for a smooth curve C) does not have nontrivial class H2(JC) on its
Jacobian side.

5.3. Lecture 3: Cohomological Hall algebras and Hecke operators on surfaces. Give
the definition of cohomological Hall algebras on surfaces (one may restrict to zero-dimensional
sheaves to avoid dealing with stacks of infinite type), and their action on Hecke patterns,
following [27] or [35] [the construction involves the notion of derived stacks, but it is sufficient
to use it as a black box]. Give the examples of A2 and the Hilbert scheme of points (see e.g. [35,
Section 5.]); State (and prove) Negut’s Lemma for length one correspondences (see [36, Prop.
2.19], or [26, Section 8.]), and deduce the explicit form of length one Hecke operators; state
the main theorem in [35], which is a description of this COHA as a W1+∞-algebra modeled
on the homology of the surface.

5.4. Lecture 4: Construction of the action of sl2 and H2 on the cohomology of
the Higgs moduli spaces. Building from the results of the previous lecture (and sticking
to the case of Higgs bundles rather than an arbitrary surface for simplicity), define an action
of a suitable degenerate COHA, and then of sl2 and of the Lie algebra H2 of Hamiltonian
vector fields on the plane on the homology of the moduli spaces or stacks of (semi)stable
Higgs bundles over the elliptic locus of the Hitchin base. This is explained in [21, Sections
6,7]. The parabolic case plays an important role in the proof of P = W , but the technical
details pertaining to that case may safely be skipped.

6. Day 5: Proofs of the P=W conjecture

6.1. Lecture 1: Maulik–Shen’s proof. Present an outline of the proof following the 4 steps
listed in [32, Section 0.2], and recall the ingredients that have been discussed in the previous
lectures. In particular, it would be great to fill some more details of certain steps when there
was not much time to discuss them in the previous lectures.
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6.2. Lecture 2: Hausel–Minets–Mellit–Schiffmann’s proof, (I). Previous lectures ex-
plained the construction of Hecke operators on the cohomology of moduli spaces of Higgs
bundles. The aim of this lecture is to explain the compatibility between these and the per-
verse filtration associated to the Hitchin fibration. In particular, this yields the compatibility
between the sl2-action and the perverse filtration (over the elliptic locus of the Hitchin base),
see [21, Prop. 8.12].

6.3. Lecture 3: Hausel–Minets–Mellit–Schiffmann’s proof, (II). Conclude the argu-
ment of the proof of P = W following [21, Section 8] : one proves P = W successively for
(twisted) parabolic Higgs bundles over the elliptic locus, twisted parabolic bundles, twisted
nilpotent parabolic bundles and finally (!) usual Higgs bundles. This also provides an inde-
pendent proof of the curious Hard Lefschetz property.
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