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1. COHEN-MACAULAY MODULES AND RINGS

We denote by A a local (commutative) Noetherian ring with the
maximal ideal m and the residue field k = A/m. For an A-module M
we set Kr.dim M = Kr.dim A/ anns M.

Definition 1.1. Let M be an A-module. A sequence a = (aq, as, ..., 0ny)
of elements of m is said to be an M-sequence if a; is a non-zero-
divisor on M and for each i, 1 < i € n, a; is a non-zero-divisor on
JMr/ (al,az,...,ai_l)ﬂi.

Theorem—Definition 1.2. Let M be a finitely generated A-module.
The following conditions are equivalent:
(1) Ext}y(k, M) =0 for all i < d.
(2) Ext’,(N,M) = 0 for all i < d and any A-module N of finite
length.
(3) Ext'y(N, M) = 0 for all i < d and some A-module N of finite
length.
(4) There is an M-sequence of length d.
The biggest d with these properties is called the depth of M and denoted
by depth, M.

Proof. Obviously, (1) = (2) = (3). Let N be an A-module of fi-
nite length, dy(M) = min {i | Exty(N, M) # 0} and d,(M) be the
maximal length of an M-sequence. If ds(M) = 0, every element
of m is a zero divisor on M. Hence m € Assq M and there is a
submodule in M isomorphic to A/m = k. Since N has a quotient
module isomorphic to k, Homuy(N, M) # 0, so dy(M) = 0 too. If
ds(M) = d > 0, choose an M-sequence (@ = aq,as,...,a4). Then the
sequence 0 — M = M — M/aM — 0 is exact. It gives an exact
sequence

Ext’TH (N, M) — Ext’T' (N, M/aM) — Ext, (N, M) % BExt! (N, M).

If i < dy(M), it implies that Ext’y' (N, M/aM) = 0. If i = dy(M),
Ext’ (N, M) is a nonzero module of finite length. Therefore, a is a zero
divisor on this module, whence Ext’;*(V, M/aM) = 0. It means that
dy(M/aM) = dy(M) — 1. Since d,(M/aM) = d — 1, an induction on
ds(M) gives that ds(M) = dy(M), that is (3) < (4). Moreover, since
it is true for an arbitrary A-module of finite lenght, (1) < (4) too. O

Obviously, depth 4 M = depth 4/, 3 M.

Corollary 1.3. Lel M be a finitely generated A-module, d = depth 4 M,
and a = (ay,as,...,an) be an M-sequence.




(1) depth 4 M/aM = d —m.
(2) There is an M -sequence (a1, as,...,ay) containing a.

Proof. The proof above implies that depth 4(M/aM) = depth, M — 1
if a is a non-zero-divisor on M, so (1) follows by induction. Then, to
obtain (2), one only has to choose an M/aM-sequence (@1, ..., 04)
of length d — m. O

Proposition 1.4. If p € Assqy M, then depthy M < Kr.dimA/p. In
particular, depth, M < Kr.dim M.

Proof. We use the induction by d = depth, M, the case d = 0 being
trivial. Let d > 0 and a is a non-zero-divisor on M, that is a ¢
UPEASSAM p. If p € Assy M, then Homy(A/p, M) # 0. The exact

sequence 0 =+ M = M — M /aM — 0 induces the exact sequence
0 — Homa(A/p, M) = Homyu(A/p, M) — Homs(A/p, M/aM),
whence Homa(A/p, M/aM) # 0 by Nakayama’'s lemma. Therefore,
p + aA annihilate some nonzero element of M, hence p+ aA C q for
some q € Assy M/aM. By the inductive supposition,
depthy M/aM = depthy M — 1 < Kr.dimA/q <
< Kr.dim A/(p 4+ aA) < Kr.dim A/p — 1. O

Proposition 1.5. (1) A sequence of elements (a1, aa, . .., a,) from
m is an M -sequence if and only if Ext'y(A/a, M) # 0, while
Exty(A/a, M) = 0 fori < m. In this case ExtF(A/a, M) ~
M/aM.

(2) If (a1,as,...,0n) is an M-sequence and all elements a; belong
to an ideal I, then Exty(N,M) = 0 for i < m and any A-
module N such that IN = 0.

Proof. We use induction on m. Let a = a;, M = M/aM. Obviously,
a is a non-zero-divisor on M if and only if Hom,(A/aA, M) = 0. So
we can suppose that a is indeed a non-zero-divisor on M. Consider the
exact sequence 0 — M 2 M — M — 0. It gives the exact sequence

Hom (N, M) = 0 — Hom4(N, M) — Extl (N, M) %
% Exty(N, M) — Extly(N, M) — Ext3(N, M) %
oo 2 Extiy (N, M) — Extiy (N, 7) — Extif ' (3, M) & ..

since a Ext’y(N, M) = 0. It implies both claims if m = 1. If m > 1, it
implies that

min {7 | Exty(N,M) # 0} = min {i| Extiy(N, M) #0} +1,




whence both claims follow by the inductive supposition applied to M
and the sequence (as, as, ..., an). O

Corollary 1.6. If (ay,as,...,a,) 18 an M-sequence end o is any per-
mutation of indices, then (as1, 042, - .., 00m) 15 also an M -sequence.

Definition 1.7. An A-module M is said to be Cohen—Macaulay mod-
ule if depthy, M = Kr.dim M. If, moreover, Kr.dim M = Kr.dim A, M
is called marimal Cohen—Macaulay. If a ring A is a Cohen—Macaulay
A-module, it is called a Cohen—Macaulay ring.

We denote by CM(A) the category of maximal Cohen—Macaulay A-
modules.

Example 1.8. (1) Every module or ring of Krull dimension 0 is
obviously Cohen—Macaulay.

(2) If Kr.dimA = 1 and A is reduced, i.e. has no nilpotent, ideals,
it is Cohen—Macaulay. In this case maximal Cohen—Macaulay
A-modules coincide with forsion free A-modules M, i.e. such
that az # 0 for every nonzero x € M and everynon-zero-divisor
a € A.

(3) If Kr.dim A =£.a_nd A is normal, i.e. integral and integrally
closed in its field of fractions, it is Cohen—Macaulay and max-
imal Cohen-Macaulay A-modules coincide with reflerive A-
modules M, i.e. such that the natural map M — M*™ is an
isomorphism, where M* = Hom4(M, A) (see Section 4).

(4) If A is regular, i.e. gldimA < oo, it is Cohen—Macaulay and
maximal Cohen-Macaulay A-modules coincide with free (or,
the same, projective) A-modules. (It follows from the Auslander—
Buchsbaum formula, see below).

(5) Aissaid to be a (local) complete intersection if A ~ R/a, where
R is regular and a = (ay,as,...,an), where m = Kr.dim B —
Kr.dim A. It is known that in this case (a1, as,...,a,) is an
A-sequence, so the preceeding example and Corollary 1.3 imply
that A is Cohen—Macaulay.

Corollary 1.3 and Proposition 1.4 imply

Corollary 1.9. Let M be a Cohen—Macaulay A-module of Krull di-
mension d, A = Afanng M.
(1} If p € Assp M, then Kr.dim A/p = d, so p is minimal among
prime ideals containing anny M.
(2) a = (a1,a2,...,a,), where a; € m, is an M-sequence if and
only if Kr.dimM/aM =d —m. In this case M/aM is also a
Cohen-Macaulay A-module.
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(3) Ifpo Cp1 C ... C pm = m is a chain of prime ideals such that
po € Assy M and, for every 0 < i < m, piyy is minimal among
prime ideals properly containing p;, then m = d.

(4) Assa M consists of the minimal ideals from supp, M and, for
any prime ideal p from spec A, ht p + Kr.dim E/p =d.

(5) If M s a mazimal Cohen-Macaulay A-module, then any A-
sequence s an M -sequence as well.

(6) If A is a Cohen-Macaulay ring of Krull dimension d, then ht p+
Kr.dim A/p = d for any p € spec A and the set of zero divisors
in A coincides with the union of minimal prime ideals.

Proof. (1) follows from Proposition 1.4.

(2) An element a € A is a non-zero-divisor on M if and only if a ¢ p
for all p € Assy M. Thus (1) imlies that this condition is equivalent
to the equality Kr.dim M/aM = d — 1. Now (2) follows by an obvious
induction on d.

(3) Use the induction on d, the case d = 0 being trivial. If d > 0,
then m > 0 too. Since p; ¢ Assy M, there is an element a € p; which is
a non-zero-divisor on M. Hence M/aM is a Cohen—Macaulay module
of Krull dimension d — 1 and p; € Assy M/aM. By the inductive
supposition, m —1 =d —1 and m = d.

Now (4-6) are immediate. O

The following result follows immediately from the long exact se-
quence for the functors Ext’,.

Lemma 1.10 (Depth lemma). If0 =+ L =+ M — N — 0 is an ezact
sequence of A-modules, then

o depthy M > min{ depth, L,depth, N }.

o depth, L > min { depthy M, depth, N +1}.

o depth, N > min { depth M, depth, L —1}.
In particular, if depthy L < depth, M or depth, N < depth aM, then
depthy L = depth, N + 1.

Corollary 1.11. If Kr.dimA = n and in an ezract sequence 0 —
My = My 4 — - = My = My — L — 0 the modules My, M, ..., M,_;
are mazimal Cohen-Macaulay, so is also the module M,,. In particu-
lar, it is the case if A is Cohen-Macaulay and My, My, ..., M,_, are
projective (for instance, if M, is the n-th syzygy of L).

Theorem 1.12 (Auslander-Buchsbaum formula). Let M be a finitely
generated A-module such that pr.dim, M < co. Then

depthy M + pr.dim, M = depth 4 A.
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In particular, if A is regular, then

depth 4 M + pr.dim, M = Kr.dim A
(Recall that in this case Kr.dim A = gl.dim A = depth, A.)

The proof will use some facts about projective (that is free) resolu-
tions, Recall that a projective resolution of a module M

(1.1) oty B BB B SO WG . S e 0

is said to be minimal if Kerd; C mF; fror all i. If M is finitely gener-
ated, such resolution always exists and is unique up to an isomorphism
(not canonically). Moreover, if (1.1) is a minimal projective resolution
of M, then the induced maps

Homa(P_1, M) < Homa(P, M) and k@4 B 22254 1,P,

are zero, hence
k P = dimy Exti,(k, M) = dimy Torf (k, M).
In particular,
pr.dimy M =max{i| P #0}.
Lemma 1.13. Suppose that
0—-M, =My 31— =M —M;—>0

s an ezact sequence anda € A is a non-zero-divisor on Mg, My, ..., M, _;.
Then it is a non-zero-divisor on My, too and the sequence

0— ﬂjn/aﬁ-{n — M, _[/Gﬁftrn_] sF e w — ﬂﬂ”;/aﬁi& — ﬂdro/aﬂlg —0
is also exact.

Proof. It is an easy induction, starting from the case n = 2, when it is
a consequence of 3 x 3 lemma. O

An obvious induction gives now the following result.

Corollary 1.14. Let fA = (a1, aq,...,ay) be both A-sequence and M -
sequence, and (1.1) be a minimal projective resolution of M. Then the
induced sequence

—>Pn/aPn~—-)»Pn_1/aPn_1 —>—>P1/aP1 —I*P()/RPQ—)'ﬂJ/aﬂ/[“%}O

is o minimal projective resolution of the A/a-module M/aM. In par-
ticular,

pr.dimy,, M/aM = pr.dim4 M.
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Proof of Theorem 1.12. . We use the induction on d = depth , A. Sup-
pose first that d = 0 and n = pr.dimy M > 0. and consider a minimal
projective resolution (1.1). There is a nonzero homomopphism (hence,
a monomorphism) a : k — A. It gives a commutative diagram

1®dn

k@A Pn k@A Pn—l
&G)IJ a®l
Pn e Pn——l

where we identify £, with A® 4 F;. Since P, are projective, both vertical
maps are monomorphisms. Since d,, is also a monomorphim, so is 1®d,,,
which is impossible, since we know that 1®d, = 0, while k®4 P, # 0.
Therefore, M is free, so pr.dim, M = depthy M = 0 and the formula
is correct.

Suppose now that d > 0 and the formula holds for rings of depth
d—1. If depth, M > 0, there is a non-zero-divisor a € A which is also
a non-zero-divisor on M. Then, by Corollaries 1.3 and 1.14

depth /0 AJaA =d —1,
depthA/aA M/aM = depth, M — 1
pr.dimy, 4 M/aM = pr.dim, M.

Since the formula holds for M /aM as A/aA-module by the inductive
supposition, it holds for M too.

Finally, let depthy M = 0. There is an exact sequence 0 —+ N —
P = M — 0, where P is free. Then pr.dimy M = pr.dim, N + 1,
while depth, M = depth, N — 1 by the Depth lemma. In particular,
depth, N = 1, so the formula holds for N, whence it follows for M. O

Theorem 1.15. Let M be a Cohen-Macaulay A-module of Krull di-
mension d, p € supp M and m be the mazimal length of M -sequences of
elements from p. Then dim A/p = d—m and M, is a Cohen-Macaulay
Ap-module of Krull dimension m. In particular, any localization of a
Cohen-Macaulay ring is also Cohen—Macaulay.

Proof. Choose an M-sequence a = (a;,as,...,a,) in p and set M =
M/aM; it is a Cohen—Macaulay modules of Krull dimension d — m.
Then p € suppM. Let py,po,...,pr be all minimal prime ideals
from supp M. Then Assqg M = {p1,p2,-.-,px}. Il p # p; for all 4,
there is an element a € p which is a non-zero-divisor on M. Then
(ai,ap,...,am,a) is an M-sequence in p, a contradiction. Therefore,
p = p; for some ¢ and Kr.dim A/p = d — m by Corolloary 1.9. On
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the other hand, since p is a minimal prime ideal containing ann4 M,
Kr.dimM, = 0, so M, is a Cohen-Macaulay A,-module. Moreover
a is an Mp-sequence in Ap. Therefore, M, is also a Cohen—Macaulay
Ap-module of Krull dimension m. [

2. CANONICAL MODULES AND (GORENSTEIN RINGS

Recall that the injective dimension of an A-module M is defined as
inj.dim, M = sup {i | Ext}y N, M # 0 for some A-module N }.

It is known that this value does not change if we only consider finitely
generated modules N. Since every finitely generated A-module has a
composition series with factors A/p;, where p; € spec A,

inj.dim, M = sup {’i | Extl,(A/p, M) # 0 for some p € spec A } :
One can even precise this formula.

Lemma 2.1. Let p # m be a prime ideal of A and M be an A-module
such that Extif'(A/q,M) = 0 for any prime ideal ¢ D p. Then
Ext’y(A/p, M) = 0.

Proof. Choose an element a € m \ p. It gives an exact sequence
0— A/p = A/p — A/(p + aA) = 0,
whence an exact sequence
Exty(A/p, M) = Extly(A/p, M) — Exti™ (A/(p + aA), M).

Since A/(p + aA) has a composition series with factors A/q for q D p,
the third term of the last exact sequence is 0, so aExt}(A/p, M) =
Ext’(A/p, M). By Nakayama’s lemma, Ext(A/p, M) = 0. i}

Corollary 2.2. inj.dim, M =sup {1 | Exty (I, M) #0 |
Proposition 2.3. Let a = (aj,ay,...,a,,) be an A-sequence, A =

Aja. Then pr.dimy A = m and ExtT(A, M) ~ M/aM. In partic-
ular, if M is finitely generated, Ext™y (A, M) # 0.

Proof. If m = 1, it follows from the exact sequence 0 — A S Ao
A — 0. Suppose that the claim holds for A; = A/ (a1,as, ..., amn_1).

The exact sequence 0 = A, == A; — A — 0 gives the exact sequence
Ext’y 1A, M) 22 Ext'y (A1, M) — Exti, (A, M) — Ext%(A;, M).
If i > m, it implies that Exty(A, M) = 0. If i = m, it gives
Ext(A, M) ~ Ext ™ (A1, M)/ ExtT (A, M) ~ M/aM.
O
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24| Theorem 2.4. If M is a finitely generated A-module and inj.dim ; M <
] A

Example 2.6.

o0, then
Kr.dim M < inj.dim, M = depth, A.

In particular, if A is a Cohen-Macaulay ring, then injdim, M =
Kr.dim A.

Proof. Let k = inj.dimy M, d = depth, A and a = (a1, as,...,a4) be
an A-sequence. Then Ext%(A/a,M) # 0, so k > d. On the other
hand, depth, A/a = 0, so there is an embedding k — A/a. It induces
an epimorphism Extf(A/a, M) — Extf(k, M) # 0. Therefore d =
pr.dimy A/a > k.

Let m = KrdimM and pp C p; C ... C p,, = m be a maximal
chain of prime ideals containing anny M. Set A; = A,,, My = M, and
k; = A;/p;A;, the residue field of A;. We use induction on i to show
that Exty(k;, M;) # 0. If i = 0, then ppAp is a unique prime in A,
associated to Mp, so Hom 4,(ko, Mp) # 0. Let 4 > 0. Then

EXtikl(A?;/pg,IAi, ]V{"')Pi_z o Exth_i] (k,'_], Mj_l) # 0

A

by the inductive supposition. Since p;A; is a unique prime ideal of A;
containing p; 14;, Lemma 2.1 implies that Ext} (k;, M;) # 0. Now,
for i = m, we get that Ext’y(k, M) # 0, whence m < k. O

Definition 2.5. (1) A maximal Cohen—Macaulay A-module w is
called canonical, if inj.dim, w < co and Ext%(k, A) ~ k, where
d = Kr.dim A.
(2) A is said to be Gorenstein if inj.dimy A < co.

Remark. Theorem 2.4 imlies that if a caninical module exists or if A is
Gorenstein, then A is a Cohen-Macaulay ring. Moreover, any canonical
module is maximal Cohen—Macaulay.

where d = Kr.dim A, then (ay, as,...,ay) is an A-sequence, so
Extd (k, A) ~ A/m =k, so A is a canonical module.

(2) If A is Artinian (or, the same, of finite length), it has a canonical
module. It is an injective envelope E(k) of the residue field k.
A is Gorenstein if and only if it is Frobenius, or selfinjective, i.e.
A is an injective A-module.

(3) If A is a finite dimensional algebra over a field K (then K C
k), the functor D = Homg(-, K) is an exact duqality on the
category A-mod. Therefore, the dual module DA is a canonical
A-module.

(1) If Ais regular, it is obviously Gorenstein. Fores=——
—sOVer-it-is-a-canonical-medule-itsett: Moreover, if m = (a4, as, ..., ay),
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The following lemma is a background for inductive proofs of results
concerning injective dimension and canonical modules.

Lemma 2.7. Let a € A be a non-zero-divisor both on A and on M,
and aN = 0. Then

Extly (N, M) =~ Extiy, 4 (N, M /aM) for all i > 0.

Proof. Modules N with aN = 0 are just modules over the ring A =
A/aA. From the exact sequence 0 — M = M — M/aM — 0 we get
the exact sequence

= Homu(N, M) — Homu (N, M/aM) — Ext (N, M) = Exty (N, M).
Since the last map in this sequence is zero,
Ext} (N, M) ~ Homu (N, M/aM) = Homu,a(N, M/aM).

Thus Ext’y(_, M), being the (i—1)-st left derived functor of Extjy(_, M)
on the category of A-modules, coincide with the (i — 1)-st derived
functor of Homyea(-, M/aM), that is with Extk_/LA(_,]M). O

Corollary 2.8. Lel an element a € A be a non-zero-divisor both on A
and on M.
(1) inj.dimy M = inj.dimys, 4 M/aM — 1.
(2) M is a canonical A-module if and only if M /aM is a canonical
AlaA-module.
(3) Let M be mazimal Cohen-Macaulay end a = (ay,as,...,a,)

be an A-sequence. M is a canonical A-module if and only if
M/aM is a canonical A/a-module.

Theorem 2.9. If a ring A is Gorenstein, it is a canonical module over
itself.

Proof. Let d = Kr.dimA = depthy A. We only have to prove that
Ext4(k, A) ~ k. Choose an A-sequence a = (ay,as,...,a4). By
Lemma 2.7 and Corollary 2.8, the ring A = A/a is Gorenstein of Krull
dimension 0 and Ext%(k, A) ~ Hom4(k, A). But A is an indecompos-
able injective A-module, so it can only have one minimal submodule.
Therefore, Hom 5(k, A) ~ k. O

Theorem 2.10. Let w be a canonical module for A, M be a Cohen-
Macaulay A-module (not necessaryly mazimal), d = Kr.dim A and m =
Kr.dim M.
(1) Bxty(M,w) =0 fori#d—m.
(2) Ext4™(M,w) is a Cohen-Macaulay A-module of Krull dimen-
sion m.
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(3) If M mazimal Cohen—Macaulay, then Exty(M,w) =0 fori >
0, MY = Homa(M,w) is also a mazimal Cohen—Macaulay A-
module and, for any A-sequence a = (a1, az,...,a,),

(2.1) MY [aM" ~ Hom 4/s(M/aM, w/aw).

Proof. We use induction on m. If m = 0, M is of finite length, hence
Exty(M,w) = 0 for i # d, and Ext%(M,w) is also of finite length, that
is Cohen-Macaulay of Krull dimension 0.

Let m > 0 and a € m bea non-zero-divisor on M. The exact sequence

0— M= M — M/aM — 0 induces the exact sequence
Ext}y(M/aM,w) — Exty(M,w) % Extl(M,w) — Exti{™(M/aM,w).
Since M/aM is a Cohen—Macaulay A-module of Krull dimension m —1,
the last term is zero if 7 # d — m and is Cohen—Macaulay of Krull di-
mension m — 1 if i = d — m. Therefore, Exty(M,w) = a Bxt}(M,w)
if i # d —m, whence Ext’,(M,w) = 0. If i = d — m, we see that a
is not a zero divisor on Ext’y(M,w) and Ext}(M,w)/a Bxt’,(M,w) ~
Ext}'(M/aM,w), hence Ext’ (M, w) is Cohen-Macaulay of Krull di-
mension m.

In particular, if M is maximal Cohen—Macaulay, then so is MY and
Ext(M,w) = 0 for i > 0. If a € A is anon-zero-divisor, it is a non-
zero-divisor on w as well. The exact sequence 0 = w = w — w/aw — 0
gives the exact sequence

0 — Homy(M,w) = Hom 4(M,w) — Homuy (M, w/aw) — 0,
whence
Homu(M/aM,w/aw) ~ Homu (M, w/aw) =~
=~ Homu (M, w)/a Homs (M, w).
An immediate induction gives the formula (2.1). O

Theorem 2.11. Let A be a Cohen—Macaulay ring.

(1) If w and ' are canonical modules for A, they are isomorphic.

(2) The natural map A — End 4w is an isomorphism.

(3) The functor M — MY = Homy(M,w) is an ezxact dualily on
the category CM(A). In particular, the natural map npr : M —
MYV is an isomorphism.

Proof. We use induction on d = Kr.dim A. First suppose that d = 0,
so CM(A) = A-mod. Then w is injective, so ¥ is an exact functor.
Moreover, k¥ =~ k, so the natural map k — kY is an isomorphim.
An immediate induction on length, M shows that A/ — MYV is an
isomorphism for all M. Therefore, V is an exact duality on A-mod.
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In particular, since w = AY, Endjw ~ Ends A ~ A and length yw =
lengthy A = [. Just in the same way, length ;' = [. Both w and &/
have a unique minimal submodule isomorphic to k. The embedding
k — w extends to a map ¢ : w’ — w. Since Ker¢ does not contain
the unique minimal submodule of «w’, ¢ is a monomorphism, hence an
isomorphism, since length 4w’ = length 4 w.

For the next considerations we use the following lemma.

Lemma 2.12. Let f : M — N be a homomorphism of A-modules,
N be a Cohen-Macaulay module and a = (ay,az,...,a,) be an A-
sequence. f is an isomorphism if and only if so is the induced map

f:M/aM — N/aN.

Proof. Obviously, we only have to prove the claim for m = 1, soa = (a).
If fis an isomorphism, f is an epimorphism by Nakayama’s lemma,

so we have the exact sequence 0 — K ~—+ M NN 0, where K =
Ker f. Since N is Cohen—Macaulay, a is not a zero divisor on N, hence
Tor{ (A/aA, N) = 0. Therefore, the sequence

0 — K/aK — M/aM s NjaN =0

is also exact. Since f is an isomorphism, K JaKK = 0,s0 K = 0 by
Nakayama’s lemma and f is an isomorphism. O

Return to the proof of Theorem 2.11. Let now d > 0. Choose
an element a € m which is a non-zero-divisor. Then both w/aw and
w'/aw’ are canonical A/aA-modules and Kr.dim A/aA = d —1. By the
inductive supposition, w/aw ~ w'/aw’. Choose an isomorphism

¢ € Homy(w'/aw’, w/aw) =~ Hom 4 (w,w’)/a Hom 4 (w, w')

and its preimage ¢ € Homu(w,w'). By Lemma 2.12, ¢ is an isomor-
phism. Just the same observation shows that the map A — Hom 4(w, w)
is an isomorphism. In particular, it means that 74 is an isomorphism.
Let M € CM(A). There is an exact sequence P, — Py — M — 0,
where £ are free modules. Since kernels of epimorphisms of maximal
Cohen-Macaulay modules are Cohen-Macaulay by the Depth lemma,
and Ext}(N,w) = 0 for any maximal Cohen-Macaulay A-module N,
the second dual sequence PV — FyY — MYY — 0 is also exact, and
since the natural maps 9p, : F; = P,YV are isomorphisms, so is the map
M- M — MYV, O

Now we may (and will) speak about the canonical A-module and
denote it by wa.
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Proposition 2.13. Ifw is a canonical A-module, then wy, is a canon-
ical Ay-module for any p € spec A. In particular, if A is Gorenstein,
50 15 Ap.

Proof. We use induction on d = Kr.dim A, the case d = 0 being obvi-
ous. If d > 0, choose a non-zero-divisor a € A. Then @ = w/aw is a
canonical module over 4 = A/aA and Kr.dim 4 = d—1. By the induc-
tive supposition, Wy = w;/awy is a canonical module over A, = A,/aA,.
By Corollary 2.8, wy is a canonical module over A,. O

3. FINITE ALGEBRAS

In this section we suppose that B is a finite A-algebra, i.e. an A-
algebra which is finitely generated as A-module. We denote by ¢+ =
tg : A = B the natural homomorphism of rings mapping a € A to
al € B. We also suppose that B is local with the maximal ideal n
and the residue field b = B/n. Note that n O mB and b is a finite
extension of the field k.

Proposition 3.1. depth, M = depthg M for any finitely generated
B-module M. In particular, M is a Cohen—Macaulay A-module if and
only if it is ¢ Cohen—Macaulay B-module.

Proof. We use induction by d = depthy M, the case d = 0 being
obvious. If d > 0, choose a € A which is a non-zero-divisor on
M. Then depthy M/aM = d — 1, so depthg M/aM = d — 1 and
depthy M = d. A
Theorem 3.2. Let A and B be Cohen—Macaulay rings, d = Kr.dim A,
c= Kr.dim B. If wy is a canonical A-module, then wg = Extd (w4, B)
is a canonical B-module. Moreover, Extly(N,wp) ~ Extit ¢(N,w,)
for any B-module N, in particular, if N is a mazimal Cohen-M. acaulay
B-module, then N =~ Ext4 (N, w,).
Proof. By Theorem 2.10, wp is a maximal Cohen-Macaulay B-module
and Ext%(B,wa) =0 for i # d — ¢. Since
Homu (N, M) ~ Homg(N, Hom4(B, M))
for every A-module M and B-module N, there is a spectral sequence
Exth (N, Exty(B, M)) = Ext% (N, M).
If M = wy, Ext}(B,wy) = 0 for ¢ # d — ¢, so this spectral sequence
degenerates to isomorphisms Exth(N,wp) ~ Ext%® (N, w,). There-
fore, inj.dimpwp < co. If N = b, we get Exts(b,wp) =~ Extffl(b,wf,) o
k", where = dimy b. Since Exi% (b, wg) is a b-module, it implies that
Extp(b,wp) =~ b, s0 wp is indeed a canonical B-module. O
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Corollary 3.3. (1) If a Cohen—Macaulay ring A is a finite algebra
over a Gorenstein ring (in particular, over a regular ring), i
has a canonical module.

(2) If a Cohen—-Macaulay ring A is a localization of a finitely gen-
erated algebra over a field, it has a canonical module.

(3) If a Cohen—Macaulay ring A is complete, il has a canonical
module.

(4) A Cohen-Macaulay analytic algebra has a canonical module.

We recall that an anelytic algebra over a topological field k is a
quotient of the algebra k{1, za, ..., z,} of the convergent power series,
i.e. power series that are convergent in a neighbourhood of zero.

Proof. (1) is a partial case of Theorem 3.2.

(2) follows from (1) and the Noether normalization lemma [13, Chap-
ter II1.D, Theorem 2].

(3) follows from (1) and the fact that every complete local Noetherian
ring is a finite algebra over a regular local ring [2, Chapitre IX].

(4) follows from (1) and the fact that k{z, 22,...,2,} isregular. O

4. SURFACE SINGULARITIES

In this section we suppose that A is a reduced ring of Krull dimension
2 (a surface singularity). We denote by @ the total ring of fractions
of A, by g, the natural homomorphism @ — @, and for every torsion
free A-module M set

M={acQ®sM|(c,®1)(a) € M, forall p € spA},

where sp;4 = {p €specA | htp =1} and we identify M, with its
image in @, ® M. Then M C M1 (we identify M with 1®@ M C
Q ®4 M). 1f A is integral, i.e. without zero divisors, then e, is an
isomorphism identifying @ with @, and, under these identifications,
MY = Nyeepya Mp- If M is not, torsion [ree, we denote by tors M its

torsion part and set Mt = (M/ tors M)t
First we prove the following properties.

41| Proposition 4.1. If M 5 a mazimal Cohen-Macaulay A-module, so
is also Homa(N, M) for any A-module N.

Proof. Consider an exact sequence A™ Lan 5 N =0 Applying
Hom,(_, M), we get an exact sequence

0 — Homa(N, M) — M™ £ M™ 5 Coker f* — 0.

Now the claim follows from Corollary 1.11. ]
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Theorem 4.2. (1) If M is a torsion free A-module, the following
conditions are equivalent:

(a) M is mazimal C’ohenfgacuulay.

(b) M = Pz M

(2) If A is normal, i.e. integral and integrally closed in Q, it is
Cohen-Muacaulay, and the conditions above are also equivalent
to the nexrt one:

(c) M is reflexive, i.e. the natural map M — M** is an iso-

morphism, where M* = Homy (M, A).

(Actually, the last claim is also valid if A is Gorenstein in
codimension 1, i.e. all localizations A, for p € sp; A are Goren-
stein.)

(3) If A has a canonical module wy, these conditions are also equiv-
alent to the next one:

(d) The natural map mpr - M — MYV is an isomorphism,

where MY = Hom 4(M, w,).

Proof. (1) Suppose that M # M. Since (MT/M), = 0 for each
p € sp1A, suppy MT/M = {m} and there is a submodule in Mt /M
isomorphic to k. Its preimage N in M gives a nonsplit exact sequence
0= M = N =k — 0, so Exti(k, M) # 0 and M is not Cohen—
Macaulay.

On the contrary, let Ext)(k, M) £ 0, so there is a nonsplit exact
sequence 0 = M — N — k — 0. Then N is also torsion free,
QR®1M =Q®, N and M, = N, for all p € sp; A. Therefore, M1 =
N' D N and MY # M. Hence, the conditions (a) and (b) are indeed
equivalent.

(2) If A is normal, then A = At and all A,, where p € sp; A, are
discrete valuation rings [13, Section II11.C,§1]. Then torsion free Ap-
modules are free, so the natural maps M, — My* are isomorphims
for every torsion free A-module M. Since M** is Cohen—Macaulay by
Proposition 4.1, it implies that (c)<(b).

(3) is proved similarly. O

Corollary 4.3. A homomorphism f : M — N of mazximal Cohen—
Macaulay A-modules is an isomorphism if and only if so are its local-
izations fy, : My — N, for all p € sp; A.

Corollary 4.4. (1) The embedding of categories CM(A) — A-mod
has a left adjoint functor M — M.
(2) If A 4s normal (or at least Gorenstein in codimension 1), then
Mt~ M.
(3) If A has a canonical module, then M ~ MVV.
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Proof. 1t follows from Theorem 4.2, Proposition 4.1 and the fact that

Homy(N, M), = Hom g, (Ny, M) = Hom g, (N}, M) = Hom4 (N, M),

for all p € sp; A. (]
The module M7 is often called the Macaulayfication of M.

Corollary 4.5. Let M be an A-module. The functor Homa(M,_) :
CM(A) — A-mod has a left adjoint - Ky M = (_®4 M)T.

We apply the last result to the extensions of Cohen—Macaulay rings.

Definition 4.6. Let A C B be an extension of rings. A homomor-
phism of A-modules p : B — A is said to be a Reynolds eraior if
pla) = a for all a € A.

Obviously, a Reynolds operator exists if and only if B = A @& C for
some A-submodule C C B.

Example 4.7. Suppose that a finite group G of order n acts on a ring
B and g is invertible in B. Let A be the subring of invariants, i.e.

A=B={a€B|o(a)=aforallc € G}.
Then

is a Reynolds operator.

Proposition 4.8. Let A C B be an extension of rings such that there
is a Reynolds operator p: B — A.
(1) If I is an ideal of A, then IBNT = 1.
(2) If B is Noetherian, so is A.
(3) If B is local, so is A.
(4) If B is Cohen-Macaulay and integral over A, then A is Cohen—
Macaulay as well.

Proof. (1) If a = 3, a:b;, where a € A, a; € I, b; € B, then p(a) =
Ei U,ip(bi) e I

(2) If Iy c I; C I, C ... is a chain of ideals in A, then [pB C ;B C
LB C ... is a chain of ideals in B, so it must be finite.

(3) Let n be the unique maximal ideal in B, m = A Nn. For every
ideal T C A, IBC m, whence [ =IBNACm.

(4) We keep the previous notations and use the induction on d =
depth, B. If d = 0, then all elements of m are zero divisors in B. Since
B is Cohen-Macaulay, it means that m C |JI*, p;, where p1,p2,..., P,
are minimal prime ideals of B. Therefore, m C p; for some i, whence
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m = ANyp,;. Since B is integral over A, p; is a maximal ideal in B and
Kr.dim A = Kr.dim B = 0, so A is Cohen—Macaulay.

If d > 0 and a € A is a non-zero-divisor in B, then aBN 4 =
plaB) = aA,so AfaA C BfaB, depth,,, 4, B/aB = d—1 and p induces
a Reynolds operator B/aB — A/aA. Since B/aB is Cohen—Macaulay,
so is A/aA by the inductive suposition, hence also A/aA. a

5. KAHN REDUCTION

From now on let k be an algebraically closed field, 4 be a complete
noetherian normal local k-algebra of Krull dimension 2 with the max-
imal ideal m such that A/m = k. We call such an algebra a normal

surface singularity. We set S =spec A, § =9\ {m}.

Definitions and Notations 5.1. For a normal surface singularity we
denote:

(1) m#: X — S a resolulion of A, ie. a projective morphism such
that X is smooth and the restriction of 7 onto X =n'5isan
Homorphlsm XS

(2) E = 771 (m)eq, the ezceptional curve of the resolution =. It is
a connected projective curve.

(3) Ey, Es, ..., E, the connected components of E and C(X) the
subgroup in the group Div(X) of divisors on X generated by
EBy,...,E,. It Z =%, kE; with all k; > 0, we call Z an
exceptional eycle on X. We always consider such a cycle as a
(nonreduced) projective, identifying it with the subscheme of
X defined by the sheaf of ideals Ox(—2).

(4) (-..) the intersection form on the group Div X of divisors on
X. It is known [11, 12] that the its restriction onto C(X) is
negative definite.

(6) bi = —(L;.E;) and g; = pa(E;) = dimy HY{E;, Og,), the geomet-
rical genus of E;.

(6) wx the canonical sheal on X and K = K its class in Div X.
Recall that, by the adjunction formula, (K.E;) = b; + 2¢; — 2
[8]-

(7) For a coherent sheaf F on X we set F¥ = Homx(F,Ox). It is
a locally free sheaf on X.

(8) We identify coherent sheaves on S with finitely generated A-
modules and define, for such a module M, 7'M = (7" M)VV.

(9) We denote by VB(V) the category of locally free (coherent)
sheaves (or, the same, vector bundles) on a scheme V.

(10) For a coherent sheaf F on a scheme V we denote by FU its
subsheaf generated by the global sections, i.e. the image of the
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evaluation map
evr : Homy (Ox, F) ® Ox — F.

If 7° = F, we say that F is globally generated. We say that F
is generically globally generated if supp F/F° is O-dimensional.

Theorem—Definition 5.2. Let VB® be the full subcategory of VB(X)
consisting of the sheaves isomorphic to 7'M, where M € CM(A). We
call locally free sheaves from VB® full locally free sheaves.

(1) The functors = : CM(A) — VBYX) and =, : VBYX) —
CM(A) are quasi-inverse to each, thus establishing an equiv-
alence of the categories CM(A) and VB®(X).

(2) A locally free sheaf F € VB(X) is full if and only if

(a) F is generically globally generated.

(b) The restriction map H(X,F) — HO(X,F) is surjective
(hence bijective).
The latter condition can be reformulated as follows:

(¢) The natural map vr : HR(X, F) — HY(X, F) is injective.

Proof. We start from(2). Let M € CM(A), F' = n* M/ tors(7* M) and
F = wlM = (F)"W. Then F' is globally generated and F! is free
for all z outside O-dimensional subset ¥* C X. Therefore, 7, = F,
for x ¢ Y, so F is generically globally generated. Moreover, ¥ N
X =0, so H(X, F) = HYX, F) = H%(S, M). On the other hand,
HY(X,7*M) = H%(S,M) = M and the map H(S, M) — M is an
isomorphism since M is maximal Cohen—-Macaulay. It proves (b).

Suppose that (a) and (b) hold and set M = w.F. Then the map
HY(S, M) = H(X,F) — HY(S, M) = H(X,F) is bijective, hence
M € CM(A). Moreover, F' = 7*M/tors(n*M) C F is globally gen-
erated, and H(X, F') = M = H%X,F). Hence, 7/ = Imevy Since
F is generically globally generated, supp(F/F') is 0-dimensional and
F o= (FYWY = 7foM.

Let now F = mfM, G = 7T N. We have already seen that M = 7,7
and N = m,G. Since § is locall free, Homyx(7* M, G) ~ Homy (7' M, G).
Hence Homu(M,7,G) ~ Homy(n"M,G) ~ Homy(n'M,G), so 7' is
right adjoint to .. As the natural maps M — 7,.F and 7'M — F are
isomorphisms, 7' and 7, are quasi-inverse to each other.

The equivalence of (b) and (c) follows from the exact sequence for
local cohomologies

0 — HY(X,F) — HY(X, F) — HYX, F) — HL(X, F) = H'(X, F)
O
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If Z is an exceptional cycleon X, iz : Z7 — X its embedding, we
denote by Rz : CM(A) — VB(Z) the composition iz7' and call Rz the
Kahn reduction functor with respect to 7.

Definition 5.3. Let Z be an exceptional cycle on X.

(1) We call a locally free sheaf F on Z full if F = Fz = i}, F for
some full locally free sheaf 7 on X. We denote by VB®(Z) the
full subcategory of VB(Z) consisting of full locally free sheaf.

(2) We call Z a weak reduction cycle if the following conditions
hold:

(a) Oz(—Z) is generically globally generated.

(b) H'(E, Oz(—2)) = 0.

[f, moreover,

(¢) wy = Homgz(wgz, Og) is generically globally generated,
where wz = izwx(Z) is the canonical sheaf on Z, we call Z a
reduction cycle.

Proposition 5.4. A reduction cycle always ezists.

Proof. Since the intersection from is negative definite, there is an ex-
ceptional cycle C such that (C.E;) < 0 for all . Then Og(~C) is
ample on C [11, Proposition 10.4]. Therefore, the cycle nC satisfies
the conditions (a—c) for n big enough. UJ

Theorem 5.5. (1) Let Z be a weak reduction cycle. A locally free
sheaf F on Z is full if and only if
(a) F is generically globally generated.
(b) There is an extension Fa of F to a locally free sheaf on 22
such that the boundary map o : HY(E,F(Z)) — H'(E, F)
induced by the Z-twist 0 — F — Fo(Z) = F(Z) = 0 of
the natural exact sequence 0 — F(—Z) = Fo —- F = 0 is
injective.
(2) If Z is a reduction cycle, F a full locally free sheaf on Z. There
is a unique full locally free sheaf 7 on X such that F = F.
Therefore, if Z is a reduction cycle, the Kahn reduction functor Ry =
iyl : CM(A) — VB®(Z) induces a one-to-one correspondence between
isomorphim classes of mazimal Cohen-Macaulay A-modules and full
locally free sheaf on Z.

The proof of this theorem consists of several steps. In what follows we
fix a weak reduction cycle Z and denote by i, the embedding nZ — X,
O = Oz and O, = O,z. For a locally free sheaf F on X we set
F. = i,F; in particular, F = Fy. It is a locally free sheafl on nZ and
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there are exact sequences
(Ss) 0=+ Fu(—-2) = Fppu = F > 0.

Its Z-twist for n = 1 induces the boundary map 6 : HY(E,F(Z)) —
HY(E,F) of the condition (b) of Theorem 5.5. For any n, twisting S,
by (n + 1)Z, we obtain an exact sequence

(5.,) 0= Fp(nZ) = Fou((n+1)2) > F((n+1)Z) — 0.
It induces homomorphisms
AL HYE,F.(nZ)) - HY(E,F.ul(n+1)2)),
so we can consider their dirtect limit.
Lemma 5.6 (Wahl's lemma, [14, Lemma B.2]). For any i = 0
Ii@)Hi(E, Fn(nZ)) ~ HFY(X, F).

Proof. The exact sequence 0 =+ Ox(—nZ) = Ox — O, — 0 implies
that Exty (O0n,F) = 0 for i # 1 and Exti(On, F) =~ F(nZ)/F ~
Fn.(nZ). Therefore, the spectral sequence for Ext gives isomorphisms
Ext'y(O,, F) ~ H(X,F,(nZ)). Obviously, the diagram

~

ExtiF} (O, F) —— H{(X,F,(nZ))

| |
Ext{(Ons1, F) —— H{(X,Fpy(n+1)),
induced by the natural map ¢, : On,y1 — Oy, is commutative. Since,
by [5, Theorem 2.8],

HYYX, F) =~ lim Ext™t(O,, F),
it gives us the necessary isomorphism. [l

We denote by ﬁi(_X,F ) the m-adic completion of the A-module
H!(X, F). Note that supp H'(X, F) = {m} and all H'(X, F) are finitely
generated A-modules, since 7 is projective. Therefore ﬁi(X ,F) is of
finite length, so H(X, F) = HY(X, F). Recall also that Hi(X,F) = 0
for i > 1 [8, Corollary I11.11.2], so H! is left exact.

Lemma 5.7. If F is generically globally generated, then so is also F
and HY(X, F(—=2Z)) = 0.

In particular, the conditions (a) of Theorem 5.2 and of Theorem 5.5
are equivalent.
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Proof. By the theorem on formal functions [8, Theorem III.11.1],
HY(X, F(—2)) = HY(X, F(=Z)) ~ lim H'(E, F..(—2)).

Exact sequences (S,) show that F,, has a chain of subsheaves with fac-
tors F(—mZ) for 0 < m < n, hence F,(—Z) has a chain of subsheaves
with factors F(—(m+1)Z). Since F and Oz(—7) are generically glob-
ally generated, so are all sheaves F(—m.Z), so there are exact sequences

O =+ F(—-mZ) > T =0
and
rO(—Z) - F(—(m+1)Z) = T =0,

where supp 7 is O-dimensional, so 7 (—Z) ~ 7. Since H(E, O(-2)) =
0 and HY(E, T) = 0, it gives that H(E, F(—(m+1)Z)) = 0. Therefore,
HYE,F.(=Z)) =0 and H (X, F(—2)) = 0.

Note that the resriction on X of the sheaf F coincide with that of
m*m,JF, which is globally generated. Therefore supp Cokerevy C E.
The exact sequence

0= F(-Z) > F3F—=0

shows that the map H(X,F) — HY(X, F) is surjective, i.e. every
section of F lifts to a section of F. Since F(—Z), C m,F, for any
x € E and F is generically globally generated, the sheaf F is also
generically globally generated. (]

Corollary 5.8. An exceptional cycle Z is a weak reduction cycle if and
only if Ox(—2) is generically globally generated and H (X, Ox(—2)) =
0. [t is a reduction cycle if and only if also w¥(~Z) is generically
globally generated.

Proof. The necessity follows from Lemma 5.7. Suppose that Ox(—Z) is
generically globally generated and H' (X, Ox(—Z)) = 0. There is a ho-
momorphism f : mOy — Ox(—Z) with 0-dimensional supp Coker f.
Then supp Coker f(—Z) is also 0-dimensional, so there is a surjection
H'(X,mOx(—Z)) — HY(X, Ox(~2Z2)), whence HY(X,Ox(-22)) =
0. Therefore, the exact sequence
0— OX(—QZ) — (DX(—Z) — Oz(—Z) —0

induces a surjection H(X, Ox(—2)) — H(X,0z(—Z)) and an iso-
morphim H'(X,Ox(—Z)) ~ HY(X,0z(—2Z)). Thus Z is a weak re-
duction cycle. Now the last claim also follows from Lemma 5.7, since
w} ~ wx.(—Z) ®0x Oz. ]
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Proposition 5.9. Let F be a locally free sheaf on X. It is full if and
only if F is generically globally generated and the map O is injective.

Proof. By Lemma. 5.7, we only have to prove that vz is injective if and
only if so is dr. By Wahl’s lemma, we have a commutative diagram

H(E,F(Z)) — HY(E,F)

(5.1) l T

HL(X,7) —% HY(X,F),
where the left vertical map is injective, while the right vertical map is
bijective, since H'(X,F(—Z)) = 0 by Lemma 5.7. Therefore, if v5 is
injective, 50 is dF.

Let now Jf is injective. We will show that in this case the maps

An =AY : HYE, F (nZ)) = HY(E, Frpy((n +1)Z))
arizing from the exact sequences (S),) are surjective, hence bijective.
Then the left vertical map int he diagram 5.1 is bijective too, so vr is
injective.

Note that A, is surjective if and only if the boundary map 8, :
HY(E,F((n + 1)Z)) — HY(E,F.(nZ)) is injective. Denote by «, the
composition of 8, with the restriction H'(E, F,(nZ)) — HY(E,F(nZ)).
It is the boundary map for the exact sequence

(5") 0—=F(nZ) =F((n+1)Z) = F((n+1)2) — 0,

especially, ap = OF is injective. Since Ox(—2) is generically glob-
ally generated, so is also Ox(—nZ), hence there is an exact sequence
mOx — Ox(—nZ) — M — 0 with 0-dimensional supp M. It gives
an exact sequence mO, = Op(—nZ) = M,z — 0. Dualizing, we ob-
tain a monomorphism Ox(nZ) — mOyx such that the induced maps
On(nZ) — mO,, are monomorphisms too. Tensoring it with (§"), we
obtain a commutative diagram with exact rows

0 — F(nZ) — F((n+1)Z) — F((n+1)Z) —— 0

! l J

0 — mF —— mR(Z) —b F(Z) — 0,

where all vertical maps are injective. It induces a commutative diagram

H(F((n+1)Z) —=2 HY(F(nZ))

| |

mHY(F(Z)) %% mH!(sF),
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where the left vertical map is injective. Since oy is injective too, so is
oy, for all n, hence also 8,. It accomplishes the proof. W

Recall some results on noncommutative cohomologies and their rela-
tion to locally free sheaves [6, 7). The locally free sheaves of a prescribed
rank 7 on the scheme nZ are in one-to-one correspondence with the
elements of the cohomology set H'(G,), where G,, = GL(r,0,). The
exact sequence

0—=O0(-nZ) =0 -0, =0
gives rise to the exact sequence of group bundles
0N —=Ghp =G, =0,

where N' = Homnz(Or, O(—nZ)) ~ OY ® @. Therefore, there is an
exact sequence of punctured sets

(5.2) HO(Gn) 5 HY(W) D HY(Grpa) & H(Gh).

Here “exact” means that at each place the preimage of the neutral
element coincides with the image of the preceeding map. Moreover,
for any element ¢ € H'(G,,) one can naturally define an element dc €
H*(N), where V¢ is the twist of A with respect to c, so that ¢ € Img
if and only if dc = 0. The fibres of f coincide with the orbits of the
natural action of H(G,,) on H'(N). Namely, if g € H%(G,,), choose an
affine covering {U;} of E such that g|y, = g; for some g; € T(U;, Gry1).
Then §(g) = (97 'g;- If v € HY(N)n is presented by the cocycle (7;;)
on this covering, then g - v = §(g) + (gi’yijgj_l).

Proof of Theorem 5.5(1). Since H* vanishes on E, the map g in (5.2)
is surjective, i.e. every locally free sheaf 7, on nZ lifts to a locally free
sheaf F,41 on (n+ 1)Z. Thus any locally free sheaf F on Z lifts to a
locally free sheaf F,, on nZ, and these liftings can be so chosen that,
for every n, the sheaf F,, coincides with the resriction of F,y;. Then
the inverse limit of F,, gives a locally free sheaf F on X. Moreover, if
F is generically globally generated and Jg is injective, then F is full by
Proposition 5.9, which proves the claim. Ol

Since H'(O(—Z)) = 0 and H(O(—2)) is generically globally gen-
erated, then also H'(O(—nZ)) = 0 (see the proof of Lemma (5.7)).
Therefore, every section of G, lifts to a section of G,+; and Imd = 0.
Hence, the action of HYG,,) C Hom,z(®@,, @,) on H'(N) coincide with
the Yoneda multiplication.

Lemma 5.10. Let F be a locally free sheaf on X. Then HL(F) ~
HY (FYQuwy)', where V' denotes the dual vector space to V. Moreover,
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these isomorphisms are compatible with those of Lemma 5.6 and the
Grothendieck dualily, i.e. the arising diagrams

HY(F.(nZ)) —— HYFY(—nZ) ® waz)

o0 | i
HL(F) —— HY(FY @wx)’
are commutative.

Here the right vertical map comes by duality from the epimorphism
F — F, and the isomorphim w,z ~ @, ® wy(nZ). Note that both
vertical mas are isomorphisms: the left one by Lemma 5.6 and the right
one since H? = 0 on X, so H! is right exact.
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