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During his undergraduate studies at Stanford, Michael Lindsey distinguished himself

by winning numerous accolades, most notably the Kennedy Thesis Prize for his exceptional

work on optimal transport. The results he obtained, together with Yanir Rubinstein, were

subsequently published in the SIAM Journal on Mathematical Analysis in 2017. This paper

earned Michael the prestigious SIAM Student Paper Prize in 2019.

Michael then pursued his graduate studies at UC Berkeley, where his excellence contin-

ued to shine. In 2018, he was awarded the Bernard Friedman Memorial Prize in Applied

Mathematics. Under the supervision of Lin Lin, he completed an outstanding PhD the-

sis in 2019, focusing on the quantum many-body problem � one of the most signi�cant

challenges in theoretical physics. The quantum many-body problem is central to under-

standing matter in all its forms, from atomic nuclei and molecules to condensed matter

and Bose-Einstein condensates. Mathematically, for spin-1/2 particles on a �nite lattice,

the problem boils down to computing the partition function Z = Tr
(
e−β(H−µ)

)
, where H

is a Hermitian matrix, β is the inverse temperature, and µ is the chemical potential. The

dimension of H, however, grows exponentially with the number of lattice sites L, making

direct computation infeasible for systems where L exceeds 20, corresponding to matrix di-

mensions larger than 1012. Fortunately, the algebraic structure of the quantum many-body

problem provides a pathway to simpli�cation.

The quantum many-body problem can indeed be formulated in terms of operator alge-

bras, using the second-quantized formulation of the many-body Hamiltonian

Ĥ :=
L∑

i,j=1

hij â
†
i âj +

1

2

L∑

i,j,k,l=1

Vijklâ
†
i â

†
j âlâk (for two-body interactions),

where âi and â†i represent the annihilation and creation operators of particles, subject to

either the canonical commutation (CCR) or anticommutation (CAR) relations depending

on whether the particles are bosons or fermions. The matrix h is Hermitian, and the 4th-

order tensor V has certain symmetries that make the operator H self-adjoint. The �rst

term in the Hamiltonian models the kinetic and external potential energy of the particles,

while the second term describes the interactions between the particles. The goal is to

compute the partition function, along with other key quantities, such as one-body Green's

functions or self-energies.

A powerful approach physicists use to tackle this is many-body perturbation theory,

visualized through Feynman diagrams. The simplest version involves putting a coupling

parameter α in front of the interaction term and expanding the partition function in

powers of α. Feynman diagrams provide an e�cient way to keep track of the many terms

in the expansion and can be given a physical interpretation. In addition, each diagram

can be translated into a mathematical expression involving two simple objects: straight

or curved lines correspond to free particle propagations described by the non-interacting

Green's function G0 (i.e. the resolvent of the matrix h), while wiggly lines represent

interactions between the particles described by the interaction tensor V . At �rst order,

there are only two diagrams: the dumbbell and the oyster, but the number of diagrams

grows exponentially with the order of the expansion (Fig. 1).

1



However, this �bare� diagrammatic expansion is limited in practical value, as inter-

actions are rarely small enough for perturbation theory to be e�ective. More useful is

the bold diagrammatic expansion, describing the dynamics of �dressed� particles subjected

renormalized interactions. The bold diagrammatic expansion can be formally derived from

the Luttinger-Ward formalism, but this construction is not mathematically sound, and the

very existence of the Luttinger-Ward functional for fermions has recently been questioned.

In collaboration with Lin Lin, Michael produced a series of groundbreaking papers that

provided a rigorous mathematical foundation for the Luttinger�Ward theory for Euclidean

lattice �elds.

Figure 4: First order expansion for Z with labeled diagrams. (a) (b) correspond to
the first and second term in Eq. (3.3). (b’) gives an equivalent term to (b) and should
not be counted twice.

diagram is measured by its symmetry in a certain sense. Before making these no-
tions precise, we provide careful definitions of labeled and unlabeled closed Feynman
diagrams.

3.2 Labeled and unlabeled diagrams
We begin with a definition of unlabeled closed Feynman diagrams, and then define
labeled diagrams as unlabeled diagrams equipped with extra structure. Given n
unlabeled interaction lines, each with four dangling half-edges, intuitively speaking
we produce an unlabeled closed Feynman diagram by linking half-edges according to
a pairing on all 4n of them. By linking together the half-edges dangling from a single
interaction line, one can produce only the two ‘topologically distinct’ diagrams shown
in Fig. 5. By applying the linking procedure to two interaction lines, one obtains the
diagrams in Fig. 6.

Figure 5: Unlabeled closed Feynman diagrams of order 1. In many-body perturbation
theory, the left-hand diagram corresponds to the ‘Hartree’ term and is often referred
to as the ‘dumbbell’ diagram. The right-hand diagram corresponds to the ‘Fock
exchange’ term and is often referred to as the ‘oyster’ diagram.

Observe that via this linking procedure, each interaction line can be viewed as a
vertex of degree 4 in an undirected graph with some additional structure, in particular
a partition of the four half-edges that meet at the vertex into two pairs of half-edges
(separated by the wiggled line). Half-edges from the same interaction line may be
linked, so in fact the resulting graph may have self-edges (or loops). (In an undirected
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graph with self-edges, each self-edge contributes 2 to the degree of the vertex, so that
the degree indicates the number of half-edges emanating from a vertex.)

In fact it is more natural to view closed Feynman diagrams as being specified via
the linking of half-edges than it is to view them as undirected graphs specified by
vertex and edge sets (V, E). We now provide careful definitions.

Definition 3. An unlabeled closed Feynman diagram � of order n consists of a
vertex set V with |V | = n and the following extra structure. To the vertices v 2 V
there are associated disjoint sets H1(v) and H2(v) each of cardinality 2. The union
H(v) := H1(v) [ H2(v) is the ‘half-edge set’ of the vertex (or ‘interaction’) v, and
the partition {H1(v), H2(v)} reflects the separation of the half-edges into two pairs
separated by a wiggled line. The (disjoint) union

S
v2V H(v) is equipped with a

partition ⇧ into 2n pairs of half-edges.4 In total we can view the unlabeled diagram
� as the tuple � = (V, H1, H2,⇧). For any half-edge h 2 Sv2V H(v), let the unique
vertex v associated with this half-edge be denoted by v = v(h).

4Intuitively speaking, these data specify a recipe for linking up half-edges to form a connected
undirected graph of degree 4, but the previously specified data are a more natural representation of
the diagram, especially once labels are introduced.
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Figure 1: Bare �rst-order (top) and second-order connected (bottom) Feynmann diagrams.

Michael Lindsey also made major strides in quantum embedding methods. These meth-

ods provide approximations of large many-body problems by breaking them into smaller,

locally solvable problems that interact through a global mean �eld. One notable example

is the dynamical mean-�eld theory (DMFT), which revolutionized our understanding of

the Hubbard model. Michael Lindsey proved the �rst rigorous mathematical results on

DMFT, made improvements to numerical methods, and even introduced a novel quantum

embedding method. His method, the �rst of its kind with a variational structure, provides

a lower bound to the ground-state energy and can be solved using standard semi-de�nite

programming (SDP) algorithms.

During his postdoctoral research at the Courant Institute, Michael Lindsey broadened

his �eld of action to include Monte Carlo methods and tensor networks. His collaboration

with top physicists notably resulted in a highly regarded paper published in Nature Com-

munications. Michael Lindsey has since returned to UC Berkeley as an Assistant Professor,

continuing to expand the frontiers of mathematical and numerical physics. His current re-

search ventures into new areas such as randomized, entropically regularized semi-de�nite

programming.

To conclude, let me quote one of Michael Lindsey's reference letters, which perfectly

encapsulates his unique talents: In my entire career, I have not met someone who so

perfectly embodies the complete package � someone for whom mathematics truly has no

boundaries. Lindsey is one of the few people I know who has made contributions to both

pure and applied mathematics at the very highest level.
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