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During his undergraduate studies at Stanford, Michael Lindsey distinguished himself
by winning numerous accolades, most notably the Kennedy Thesis Prize for his exceptional
work on optimal transport. The results he obtained, together with Yanir Rubinstein, were
subsequently published in the STAM Journal on Mathematical Analysisin 2017. This paper
earned Michael the prestigious STAM Student Paper Prize in 2019.

Michael then pursued his graduate studies at UC Berkeley, where his excellence contin-
ued to shine. In 2018, he was awarded the Bernard Friedman Memorial Prize in Applied
Mathematics. Under the supervision of Lin Lin, he completed an outstanding PhD the-
sis in 2019, focusing on the quantum many-body problem — one of the most significant
challenges in theoretical physics. The quantum many-body problem is central to under-
standing matter in all its forms, from atomic nuclei and molecules to condensed matter
and Bose-Einstein condensates. Mathematically, for spin-1/2 particles on a finite lattice,
the problem boils down to computing the partition function Z = Tr (e*ﬁ(H*“)), where H
is a Hermitian matrix, 8 is the inverse temperature, and p is the chemical potential. The
dimension of H, however, grows exponentially with the number of lattice sites L, making
direct computation infeasible for systems where L exceeds 20, corresponding to matrix di-
mensions larger than 10'2. Fortunately, the algebraic structure of the quantum many-body
problem provides a pathway to simplification.

The quantum many-body problem can indeed be formulated in terms of operator alge-
bras, using the second-quantized formulation of the many-body Hamiltonian
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where @; and Zi;r represent the annihilation and creation operators of particles, subject to
either the canonical commutation (CCR) or anticommutation (CAR) relations depending
on whether the particles are bosons or fermions. The matrix h is Hermitian, and the 4th-
order tensor V has certain symmetries that make the operator H self-adjoint. The first
term in the Hamiltonian models the kinetic and external potential energy of the particles,
while the second term describes the interactions between the particles. The goal is to
compute the partition function, along with other key quantities, such as one-body Green’s
functions or self-energies.

A powerful approach physicists use to tackle this is many-body perturbation theory,
visualized through Feynman diagrams. The simplest version involves putting a coupling
parameter « in front of the interaction term and expanding the partition function in
powers of a. Feynman diagrams provide an efficient way to keep track of the many terms
in the expansion and can be given a physical interpretation. In addition, each diagram
can be translated into a mathematical expression involving two simple objects: straight
or curved lines correspond to free particle propagations described by the non-interacting
Green’s function Gy (i.e. the resolvent of the matrix h), while wiggly lines represent
interactions between the particles described by the interaction tensor V. At first order,
there are only two diagrams: the dumbbell and the oyster, but the number of diagrams
grows exponentially with the order of the expansion (Fig. 1).



However, this “bare” diagrammatic expansion is limited in practical value, as inter-
actions are rarely small enough for perturbation theory to be effective. More useful is
the bold diagrammatic expansion, describing the dynamics of “dressed” particles subjected
renormalized interactions. The bold diagrammatic expansion can be formally derived from
the Luttinger-Ward formalism, but this construction is not mathematically sound, and the
very existence of the Luttinger-Ward functional for fermions has recently been questioned.
In collaboration with Lin Lin, Michael produced a series of groundbreaking papers that
provided a rigorous mathematical foundation for the Luttinger—Ward theory for Euclidean

lattice fields.
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Figure 1: Bare first-order (top) and second-order connected (bottom) Feynmann diagrams.

Michael Lindsey also made major strides in quantum embedding methods. These meth-
ods provide approximations of large many-body problems by breaking them into smaller,
locally solvable problems that interact through a global mean field. One notable example
is the dynamical mean-field theory (DMFT), which revolutionized our understanding of
the Hubbard model. Michael Lindsey proved the first rigorous mathematical results on
DMFT, made improvements to numerical methods, and even introduced a novel quantum
embedding method. His method, the first of its kind with a variational structure, provides
a lower bound to the ground-state energy and can be solved using standard semi-definite
programming (SDP) algorithms.

During his postdoctoral research at the Courant Institute, Michael Lindsey broadened
his field of action to include Monte Carlo methods and tensor networks. His collaboration
with top physicists notably resulted in a highly regarded paper published in Nature Com-
munications. Michael Lindsey has since returned to UC Berkeley as an Assistant Professor,
continuing to expand the frontiers of mathematical and numerical physics. His current re-
search ventures into new areas such as randomized, entropically regularized semi-definite
programming.

To conclude, let me quote one of Michael Lindsey’s reference letters, which perfectly
encapsulates his unique talents: In my entire career, I have not met someone who so
perfectly embodies the complete package — someone for whom mathematics truly has no
boundaries. Lindsey is one of the few people I know who has made contributions to both
pure and applied mathematics at the very highest level.



