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Yu Deng completed his Ph.D at Princeton University in 2015 and is currently
Professor of Mathematics at the University of Chicago. During the intervening decade,
he has rapidly established himself as a highly original thinker whose work has already
had an outsize impact on PDE theory and mathematical physics. In this laudatio, I
would like to focus on two recent research programmes where Yu Deng has completely
transformed the field by resolving several longstanding open problems.

The first programme concerns the construction of solutions to infinite-dimensional
Hamiltonian equations with very irregular initial data. Given a polynomial % , consider
for example the Hamiltonian �_ (c, q) defined on smooth fields c, q : T3 → R by
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which is preserved by the nonlinear wave equation m2
C q = Δq − _q3 if we set c = mCq .

This suggests that if we can make sense of the measure

`_ (3c,3q) = exp
(
−�_ (c, q)

)
3c 3q ,

then `_ should be invariant under the flow of the nonlinear wave equation. The problem
with this reasoning is twofold: first, the only way to make sense of the measure `_ is
via a “renormalisation procedure” which modifies � by an approximation-dependent
diverging term �Y ‖q ‖2, so that a corresponding renormalisation procedure would have
to be implemented at the level of the nonlinear wave equation. Second, the measure `
is not supported on functions, but on very irregular distributions, namely one only has
q ∈, U,? and mCq ∈, U−1,? for U < −1

2 .
A similar question in dimension two was studied by Bourgain in the mid-nineties (al-

though he was considering the nonlinear Schrödinger equation). The two-dimensional
case is much easier for two reasons. Solutions are much more regular (one only needs
to take U < 0) and the measure `_ is equivalent to the Gaussian measure `0. Since the
latter is very well understood, one has a very good handle on what the initial conditions



for the dynamic look like. This is why, despite sustained efforts by the PDE community,
the three-dimensional case has long seemed out of reach.

In a technical tour de force, Deng and his collaborators Bringmann–Nahmod–Yue
finally succeeded in cracking the three-dimensional case in 2024. This was the culmi-
nation of a series of articles in this general area where Deng–Nahmod–Yue refined
our understanding of the two-dimensional case (with |q |4 replaced by more general
polynomials) and introduced several tools, in particular so-called “random tensors”,
which have already found multiple applications.

A second research programme where Deng came out of left field to instantly impose
himself as an undisputed world leader is that of deriving kinetic equations from first
principles. Here, in collaborations with Hani and Hani–Ma, he solved two longstanding
open problems, namely the derivation of the wave kinetic equation from the nonlinear
Schrödinger equation and the derivation of the Boltzmann equation from hard sphere
dynamic.

The former arises naturally when considering a rather large class of nonlinear
dispersive systems at large temporal and spatial scales, and in the weakly nonlinear
regime. The underlying idea is that in such a regime, one expects the relevant Fourier
modes of the solution to have very rapidly varying phases so they get “smeared out”
and one obtains an autonomous evolution for the amplitudes. A formal calculation
allows one to “guess” the limiting equation, but placing such a formal derivation on
rigorous mathematical footing has stumped mathematicians for several decades. The
main reason is that the derivation effectively assumes that the phases of the Fourier
modes are independently and uniformly distributed at all times. While this can simply
be assumed for the initial data, it is plainly false at subsequent times.

The context of the derivation of the Boltzmann equation in dimension 3 is that
of a collection of # hard spheres of radius Y evolving according to the usual “billiard
ball” dynamic. A natural scaling is to choose these parameters such that # → ∞ but
#Y3−1 ≈ 1. In this regime, assuming that the particles are confined in a box (or a torus)
of size 1 and have initial speeds of order 1, each particle typically undergoes O(1)
collisions in O(1) time.

If one draws the initial positions and velocities of these particles randomly and
independently (modulo avoiding overlaps) from some initial distribution 50(G, E) 3G 3E ,
then one expects their statistics at later times to be described by the solution 5C to the



Boltzmann equation. A mathematical justification of this derivation was obtained by
Oscar Lanford in 1976 who established the convergence in question for a very short time
interval (short enough so that the vast majority of particles have only been involved in
at most one collision). The obstacle to extending this to longer times is conceptually
similar to that arising in the wave kinetic equation: as particles are involved in multiple
collisions, correlations build up and destroy the independence properties on which
Lanford’s result (and the formal derivation of the equation) rely. Despite sustained
effort by the PDE community (which was intensified in recent years through the series
of works by Bodineau, Gallagher, Saint-Raymond and their collaborators), getting these
correlations under control appeared to be hopeless until the recent breakthrough by
Deng–Hani–Ma.

In both cases, they showed a result that is essentially optimal, namely that the
convergence of the microscopic dynamic to the solution of the limiting equation takes
place as long as the latter remains smooth. The proofs in both cases rely on graphical
expansions of the solution (in the spirit of Feynman diagrams). This requires not only
hard analytical bounds, but also the development of a novel technique allowing to
“restart” the solution at later times. The conceptual problem that has to be overcome
can be best illustrated by the following fact. If one considers the state of the hard sphere
system at time C and flips all velocities, then the solution after a further time C recovers
the initial state exactly. If however one restarts the Boltzmann equation with initial
data 5̃C (G, E) = 5C (G,−E), then the solution after time C will not recover 50, thus showing
that smoothness of 5C on its own cannot contain enough information to control the
convergence. It was an incredible feat to be able to extract this additional information
from the graphical expansions in a way that can be used effectively.

For this impressive body of work, Yu Deng has been awarded with the 2025 Ober-
wolfach Prize by the Oberwolfach Foundation.


