
Summary of the main achievements of Nicola Gigli

Gigli’s major contributions are in three fields of analysis:

• Theory and applications of Gradient Flows,

• Structure of the Wasserstein space,

• Heat flow in non-smooth setting.

Theory and applications of Gradient Flows. This has been the theme on which Gigli spent most of
his studies during the PhD. The results that I describe below are mostly contained in the first part of the
book that Gigli, myself, and Giuseppe Savaré wrote on the topic: Gradient flows in metric spaces and in
the Wasserstein space of probability measures (Birkhäuser), [2].
For a smooth functional F : Rd → R a gradient flow starting from x0 ∈ Rd is a curve [0,∞) � t �→ xt

solution of �
x�t = −∇F (xt), ∀t ≥ 0
x0 = x0,

(1)

and the basic theory of ODE’s ensures existence and uniqueness.
Shortly said, when studying the gradient flow problem in a metric setting, one has to do three things:

• find a metric analogous of the definition of gradient flow given by the above system,

• understand under which assumptions one gets existence,

• understand under which assumptions one gets uniqueness.

To define a metric analogous of (1) one recalls the definition of metric speed |x�t| of an absolutely
continuous curve (xt) in a metric space (X, d)

|x�t| := lim
h→0

d(xt+h, xt)
|h| ,

and the definition of slope |∇F |(x) of a functional F : X → R ∪ {+∞}, valid for any x ∈ {F <∞}

|∇F |(x) := lim
y→x

�
F (x)− F (y)

�+

d(x, y)
= max

�
0, lim

y→x

F (x)− F (y)
d(x, y)

�
.

It turns out that there are essentially 3 different generalizations of (1) to an abstract metric setting:

1) Energy Dissipation Inequality formulation:
We say that a locally absolutely continuous curve (xt) is a gradient flow of the functional F :
X → R ∪ {+∞} starting from x0 ∈ {F < ∞} in the EDI formulation provided limt↓0 xt = x0

and for a.e. t < s it holds

F (xt) ≥ F (xs) +
1
2

� s

t
|x�r|2dr +

1
2

� s

t
|∇F |2(xr)dr.
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2) Energy Dissipation Equality formulation:
We say that a locally absolutely continuous curve (xt) is a gradient flow of the functional F :
X → R∪ {+∞} starting from x0 ∈ {F <∞} the EDE formulation provided limt↓0 xt = x0 and
for every 0 ≤ t < s it holds

F (xt) = F (xs) +
1
2

� s

t
|x�r|2dr +

1
2

� s

t
|∇F |2(xr)dr.

3) Evolution Variational Inequality formulation:
We say that a locally absolutely continuous curve (xt) is a gradient flow of the functional F :
X → R ∪ {+∞} starting from x0 ∈ X the EVI formulation relative to λ ∈ R (EVIλ in short),
provided limt↓0 xt = x0 and for any t > 0 it holds:

lim
h↓0

d2
�
xt+h, y

�

h
+ F (xt) +

λ

2
d2(xt, y) ≤ F (y), ∀y ∈ X.

It is easy to see that for smooth functionals on Rd the EDI and EDE formulation of gradient flows are
equivalent to the system (1), and that the EVIλ is equivalent to (1) provided the functional is λ−convex.
Also, it is possible to see that the EVIλ is a definition stronger than the EDE which is in turn stronger
than EDI.

While it may seem strange to have different definitions of gradient flow in a metric setting, in practice
this is actually a useful tool because - obviously - the stronger hypotheses one has on the functional
under study, the higher level of information one can get for the gradient flow. The existence results
can be summarized as follows (for simplycity I will state them under compactness assumption much
stronger than those actually needed):

EDI Assume that F is lower semicontinuous with compact sublevels, that |∇F | : {F < ∞} →
R ∪ {+∞} is lower semicontinuous and that

xn → x,
supn F (xn) <∞,

supn |∇F |(xn) <∞,




 ⇒ F (xn)→ F (x).

Then for any x0 ∈ {F <∞} there exists a gradient flow in the EDI sense starting from x0.

EDE Assume that F is lower semicontinuous with compact sublevels and λ−geodesically convex1 for
some λ ∈ R. Then for any x0 ∈ {F < ∞} there exists a gradient flow in the EDE sense starting
from x0.

EVI Assume that F is lower semicontinuous with compact sublevels and λ−convex along a certain
class of curves bigger than the class of geodesics (that we called generalized geodesics) for some
λ ∈ R. Then for any x0 ∈ {F <∞} there exists a gradient flow in the EVIλ sense starting from
x0.

1i.e. for any couple of x, y ∈ X there exists a constant speed geodesic joining them along which F is λ−convex.
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All the three existence results are proved via a time discretization argument: one fixes a time parameter
τ > 0 and recursively defines a sequence xτ

n by putting xτ
0 := x0 and choosing xτ

n+1 among the
minimizers of

x �→ F (x) +
d2(x, xτ

n)
2τ

.

Then one rescales in time the discrete solution found by defining

xτ (t) := xτ
[t/τ ],

where [·] denotes the integer part.
Finally, an argument introduced by de Giorgi shows that for the rescaled curve a discrete version of the
EDE is fullfilled and gives enough compatness to pass to the limit.

Concerning uniqueness, it should be noticed that in general the λ-geodesic convexity hypothesis (and
thus the EDE formulation) is not enough to get uniqueness of the gradient flow. In the abstract metric
setting something more is needed. Uniqueness and λ−contraction are consequences of the EVIλ
formulation.

Structure of the Wasserstein space In [22] Otto showed that the space P2(Rd) of probability measures
with finite second moment endowed with the Wasserstein distance W2 closely resembles a Riemannian
manifold.
Gigli gave significative improvements to the understanding of such structure. The firsts have been
obtained in collaboration with myself and Savaré in the aforementioned book:

• characterization of all absolutely continuous curves (µt) in the Wasserstein space via the continuity
equation

d

dt
µt +∇ · (vtµt) = 0.

• Study of the properties of the tangent space Tanµ(P2(Rd)) to a measure µ ∈P2(Rd) defined by

Tanµ(P2(Rd)) :=
�
∇ϕ : ϕ ∈ C∞

c (Rd)
�L2(Rd,Rd;µ)

. (2)

In particular, proof of the fact that optimal maps are tangent, which is a key statement to enable
the study of the properties of geodesically convex functionals on P2(Rd).

• Introduction of the concept of subdifferential ∂W E of a geodesically convex functional E on
P2(Rd) and study of the consequences in terms of gradient flows. Here the point is the follow-
ing: once one has the identification of absolutely continuous curves via the continuity equation, a
definition of tangent space and a definition of subdifferential of a geodesically convex functional,
he can define the gradient flow of the functional E : P2(Rd) → R ∪ {+∞} as an absolutely
continuous curve (µt) satisfying

� d

dt
µt +∇ · (vtµt) = 0,

vt ∈ −∂W E(µt), a.e. t > 0.
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The question is then whether such definition coincides with the purely metric one described before
in terms of Energy Dissipation Equality. Under general assumption the answers is yes, and this is
result is one of those which tells that the weak Riemannian structure of the space (P2(Rd),W2) is
not just a formal analogy, but actually provides deep informations on the geometry and the analysis
over such space.

• Having identified the ‘metric’ and the ‘Riemannian’ gradient flows of geodesically convex func-
tionals, the problem is to understand under which assumptions we have existence. It turns out that
many of the functionals that naturally appear in the theory (i.e. functionals of internal, potential
and interaction energy type) are convex along a sufficiently large set of generalized geodesics, so
that it is possible to prove existence, uniqueness and contractivity of gradient flows via the EVIλ
approach.

After the conclusion of his PhD, and after the appearence the book [2], Gigli continued studying the
Riemannian properties of the space (P2(Rd),W2). Basically, there are two things that his studied
helped to clear: the structure of the tangent space and the second order calculus.
In (2) I recalled the definition of tangent space to a certain measure. However, both for theoretical
and practical reasons, this space is sometimes ‘too small’: for instance, if µ is a Dirac delta, the set
Tanµ(P2(Rd)) reduces to Rd and thus cannot reasonably describe the complexity of the Wasserstein
space in a neighborhood of µ. For some applications it is better to consider a more geometric tangent
space defined as

Tanµ(P2(Rd)) :=
�

constant speed geodesics starting from µ
�Dµ

,

where Dµ is the distance defined by

Dµ
�
(µ1

t ), (µ
2
t )

�
:= lim

t↓0

W2(µ1
t , µ

2
t )

t
.

This space was already introduced in the book [2], but its relation to the one in (2) was not completely
clear. The problem of understanding the structure of the tangent space was also raised by Villani in
his monograph [27] as a question remained open on the structure of (P2(Rd),W2). Gigli in [13]
proved that Tanµ(P2(Rd)) always embeds isometrically in Tanµ(P2(Rd)) and that the following are
equivalent:

• the embedding of Tanµ(P2(Rd)) into Tanµ(P2(Rd)) is surjective,

• the space (Tanµ(P2(Rd)), Dµ) is an Hilbert space,

• µ has the following property: for any ν ∈ P2(Rd) there exists only one optimal plan from µ to ν
and this plan is induced by a map.
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For the second order calculus, the point is the following: thanks to Otto’s work, one knows that
(P2(Rd),W2) is somehow similar to a Riemannian manifold, and with the work in [2] one knows that
it is possible to develop a rigorous first order calculus, i.e. to speak about derivative of a curve and
differential of a functional even in a nonsmooth setting. Then, it is natural to ask whether the natural
second order Riemannian objects like covariant derivative, parallel transport and curvature tensor are
well defined on (P2(M),W2) or not. Independently from Gigli’s studies, Lott [17] gave a positive,
although purely formal, answer to this question. Gigli’s approach - developed independently - has been
a bit different, as he tried from the beginning to avoid smoothness assumptions and to provide not
only a formal description of second order objects, but also existence results. The first results in these
direction are contained in his PhD thesis [10] (and published in a joint work with myself [1]) and can be
summarized as follows:
‘Sufficiency’. One says that an absolutely continuous curve (µt) on [0, 1] is regular provided the vector
fields (vt) identified by

d

dt
µt +∇ · (vtµt) = 0,

vt ∈ Tanµt(P2(Rd)), q.e. t > 0,
(3)

satisfy � 1

0
Lip(vt)dt <∞.

Then along regular curves there is a well defined notion of covariant derivative and there exists the
(unique) parallel transport.
‘Necessity’. There are absolutely continuous curves (µt) such that the vector fields (vt) identified by (3)
satisfy

Lip(vt) ∼=
1
t
,

such that the parallel transport along them does not exist (curves of this kind can be chosen to be
geodesics).
Gigli then further investigated the topic in [12]. He derived explicit formulas for the calculus of
covariant derivatives and used them to rigorously introduce the curvature tensor R on (P2(M),W2) as
a, typically unbounded, operator on [Tanµ(P2(M))]4 (it coincides with the one previously calculated
by Lott in the case of smooth data). Along the same lines, he provided an explicit formula for the
differentiation of the exponential map on (P2(M),W2) and proved that, as expected, the differential of
the exponential map is the unique solution of the Jacobi equation.

Finally, a result concerning the regularity of the Kantorovich potential on non compact-manifolds,
obtained in collaboration with Figalli ([7]), has been recently selected as ‘highlighted paper’ by ESAIM
COCV.

Heat flow on metric measure spaces In [18] and [26] Lott-Villani and Sturm independently introduced
a notion of metric measure space with Ricci curvature bounded below: (X, d, m) has Ricci curvature
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≥ K provided the relative entropy functional

Ent(µ) :=






�
ρ log(ρ)dm, µ = ρm,

+∞, otherwise,

is K−geodesically convex in (P2(X),W2). The study of the properties of these spaces has been
a very rich research area in the past 5 years. The typical question is: which of those properties of
Riemannian manifolds with Ricci curvature bounded below can be replicated in this more general
setting? In particular it is natural to ask whether there is a well defined notion of Heat flow (recall that
a sufficient condition on a manifold in order to be sure that the Heat flow does not lose mass is to have
Ricci curvature bounded below).
Recalling that on a Riemannian manifold the Heat flow coincides with the gradient flow of the relative
entropy w.r.t. W2, it is natural to define the Heat flow in the abstract setting as the gradient flow of the
relative entropy w.r.t. W2. However, a priori it is not at all clear that this a good definition, as it is not
obvious that for a given initial datum there is unique gradient flow2. The contribution of Gigli (see [14])
has been to show that uniqueness, in this setting, is actually true, so that the Heat flow is well defined
in this abstract situation. In the same paper he showed that there is stability of the Heat flow under
measured-Gromov-Hausdorff convergence of the base spaces.
In a slightly different direction, in a more recent paper in collaboration with K.Kuwada and S.I.Ohta
(see [15]) he showed that in an Alexandrov setting, the gradient flow of the relative entropy w.r.t. W2

coincides with the gradient flow of the Dirichlet energy E(f) := 1
2

�
|∇f |2 w.r.t. L2. This generalizes

the fact, well known in a smooth setting, that both the gradient flows produce the Heat flow. What is new
in their approach is that the proof is purely metric, while previous results on the topic passed from PDE
analysis (that’s why such dualism was unknown in an unsmooth setting). An immediate consequence of
their result is the regularizing property of the Heat flow in the Alexandrov situation: the Heat kernel is
Lipschitz.
Finally, in a joint work in progress with me and Savaré, we are going to use the EVI formulation
of the heat flow (somehow a condition stronger than convexity of the entropy) as weak definition of
nonnegative Ricci curvature. We prove good tensorization and stability properties for this concept, as
well consistency results for the “Wasserstein calculus” provided by the Fisher information functional
(the rate of dissipation of Entropy) and the “Cheeger calculus” [3]. The latter makes sense in this context
thanks to a result by Lott-Villani, who provide Poincaré inequalities in this class of spaces.

References

[1] L. AMBROSIO, N. GIGLI, Construction of parallel transport in the Wasserstein space, Methods
and Applications of Analysis, 15 (2008), vol.1, pp. 1–30.

[2] L. AMBROSIO, N. GIGLI, AND G. SAVARÉ, Gradient flows in metric spaces and in spaces of
probability measures, Birkäuser, 2005. Second Edition in 2008.

2in general, the geodesic convexity of a functional does not imply uniqueness of its gradient flow. Furthermore, recent
studies of Sturm and Ohta showed that in spaces with non negative Ricci curvature, the distance W2 may not decrease along
the gradient flow of the entropy, so that it isn’t possible to deduce uniqueness from the contractivity.

6



[3] CHEEGER, J., Differentiability of Lipschitz functions on metric measure spaces, Geom. Funct.
Anal. 9, 3 (1999), 428–517.

[4] E. DE GIORGI, New problems on minimizing movements, Boundary Value Problems for PDE and
Applications, C. Baiocchi and J. L. Lions, eds., Masson, 1993, pp. 81–98.

[5] E. DE GIORGI, A. MARINO, AND M. TOSQUES, Problems of evolution in metric spaces and
maximal decreasing curve, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8), 68 (1980),
pp. 180–187.

[6] W. GANGBO, T. NGUYEN, A. TUDORASCU, Hamilton-Jacobi equations in the Wasserstein space,
Methods and Applications of Analysis, 15 (2008), vol.2, pp. 155–184.

[7] A. FIGALLI, N. GIGLI, Local semiconvexity of Kantorovich potential on non-compact manifold.
accepted paper, ESAIM COCV. Available at: http://cvgmt.sns.it

[8] A. FIGALLI, N. GIGLI, A new transportation distance between non-negative measures, with ap-
plications to gradients flows with Dirichlet boundary conditions. accepted paper, Journ. Math. P.
Appl. Available at: http://cvgmt.sns.it

[9] N. GIGLI, On the weak closure of convex sets of Probability measures, to appear in Rend. Mat.
Available at:http://cvgmt.sns.it

[10] N. GIGLI, On the geometry of the space of measures in Rd endowed with the quadratic op-
timal transportation distance, PhD thesis, Scuola Normale Superiore, Pisa, 2008. Available at:
http://cvgmt.sns.it

[11] N. GIGLI, on Hölder continuity in time of the optimal transport map towards measures
along a curve, to appear in Proceeding of the Edinburgh Mathematical Society, available at:
http://cvgmt.sns.it

[12] N. GIGLI, Second order analysis on (P2(M),W2), to appear in Memoirs of the AMS, available
at: http://cvgmt.sns.it

[13] N. GIGLI, On the inverse implication of Brenier-McCann theorems and the structure of
(P2(M),W2), submitted paper

[14] N. GIGLI, On the Heat flow on metric measure spaces: existence, uniqueness and stability, ac-
cepted paper, Calc. Var. and Part. Diff. Eq.

[15] N. GIGLI, K. KUWADA, S.-I. OHTA, Heat flow on Alexandrov spaces, submitted paper.

[16] R. JORDAN, D. KINDERLEHRER, AND F. OTTO, The variational formulation of the Fokker-Planck
equation, SIAM J. Math. Anal., 29 (1998), pp. 1–17 (electronic).

[17] J. LOTT, Some geometric calculations in the wasserstein space, (2007).

[18] J. LOTT AND C. VILLANI, Ricci curvature for metric-measure spaces via optimal transport, Ann.
of Math. 169, 3 (2009), 903-991

7



[19] S. I. OHTA AND K.-T. STURM, Heat flow on Finster manifolds, to appear in CPAM.

[20] MCCANN, R. J., Polar factorization of maps on Riemannian manifolds, Geom. Funct. Anal. 11, 3
(2001), 589–608.

[21] MCCANN, R. J., AND TOPPING, P., Ricci flow, entropy and optimal transportation., preprint,
2007. Available online at www.math.toronto.edu/mccann.

[22] F. OTTO, The geometry of dissipative evolution equations: the porous medium equation, Comm.
Partial Differential Equations, 26 (2001), pp. 101–174.

[23] G. SAVARÉ, Gradient flows and diffusion semigroups in metric spaces under lower curvature
bounds, C. R. Math. Acad. Sci. Paris, 345 (2007), pp. 151–154.

[24] K.-T. STURM, M.K. VON RENESSE, Entropic Measure and Wasserstein Diffusion, submitted pa-
per.

[25] K.-T. STURM Entropic measure on multidimensional spaces, preprint, available at:
http://www-wt.iam.uni-bonn.de/ sturm/de/sturm.html

[26] K.-T. STURM, On the geometry of metric measure spaces. I-II, Acta Math. 196, 1 (2006), 65–177.

[27] C. VILLANI, Optimal transport, old and new, Springer Verlag, 2008.

8


	Nicola_Gigli
	Nicola Gigli - CV
	Nicola Gigli – Curriculum Vitae

	Nicola Gigli - List of publications

