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It is a great pleasure to present the work of Vesselin Dimitrov for which he has been awarded
the Oberwolfach Prize, whose topic in 2022 is Algebra and Number Theory.

Vesselin Dimitrov has contributed to several fundamental advances in number theory, more
specifically to the so-called Diophantine geometry, and this laudatio is to a large extent an apologia
for Diophantine geometry.

Actually the work of Vesselin Dimitrov constitutes a wonderful illustration of some ironic obser-
vations by various great masters of number theory concerning this field.

In relation to his own arithmetic contributions, Charles Hermite did write: Il n’y a pas de
méthode en théorie des nombres,' to emphasize the unexpected role, when investigating Diophantine
problems, of very diverse areas of mathematics — for instance in his work, of analytic techniques,
and of the geometry of group actions and of Euclidean lattices.

In a similar vein, Jean-Pierre Serre and Jean-Marc Fontaine liked to say jokingly that number
theory is a part of applied mathematics. The rationale behind this provocative sentence is that,
while the expression “applied mathematics” usually alludes to applications of mathematics to other
scientific areas (astronomy, physics, chemistry, data analysis, computing machinery, etc.), there also
exist “inner applications” of mathematics, namely applications of mathematics to (a priori unrelated)
basic problems of mathematics. It is notably the case of number theory, which nowadays relies on
a considerable corpus of algebraic geometry, homological and homotopical algebra, representation
theory, analysis on manifolds, etc.

I would like to briefly describe three major results of Vesselin Dimitrov. Each of them may be
stated in rather elementary terms, while its proof relies on some remarkably clever and original use
of an impressive diversity of techniques, and therefore provides a striking illustration of the above
views of Hermite, Serre, and Fontaine.

The first of these results appears in his joint work with Z. Gao and P. Habegger, Uniformity in
Mordell-Lang for curves.

Let us consider a smooth projective curve C, of genus g, defined over some number field K,
namely an extension of the field Q of rational numbers of finite degree d := [K : Q]. To this curve
is canonically associated its Jacobian, Jac(C'), an Abelian variety of dimension g over K.

A basic finiteness results concerning the Diophantine geometry of curves over number fields is
due to Weil, who proved in 1929 that the abelian group Jac(C)(K) of K-rational points of the
algebraic group Jac(C) is finitely generated.?

In 1984, Faltings achieved a fantastic breakthrough by proving that, when g > 2, the set of K-
rational points C'(K) of the curve is finite, proving a long standing conjecture of Mordell. Faltings’
theorem was given an alternative proof in 1991 by Vojta, by means of new techniques of Diophantine
approximation. By elaborating considerably on Vojta’s approach to Faltings’ theorem, Dimitrov,
Gao, and Habegger have established a bound for the cardinality of C'(K) when g > 2, of the form:

C(K)| < eg, d)t et @0, (1)

IThere is no method for number theory.
2This extended some earlier work of Mordell, dealing with the case g = 1.



where ¢(g,d) denotes an explicit positive constant depending only of the genus g of the curve and
the degree d of the base field, and rk Jac(C)(K) the rank of the finitely generated abelian group
Jac(C)(K).

This is a major contribution to the central problem of number theory consisting in understanding
the finiteness properties of solutions in rational numbers of systems of polynomial equations. In a
few lines it is difficult to say anything precise concerning the proof of such a uniform bound, beyond
that it involves a large amount of techniques from algebraic and Diophantine geometry and some
very clever new ideas.

However, to put in perspective this result which provides an explicit bound on the cardinality
of the finite set C'(K), I may emphasize that the existence of some effective control on the points of
C(K) themselves (for instance on their heights, or on the vacuity of C(K)) appears today completely
out of reach. Actually, one cannot exclude that such an effective control does not exist in general,
and from this perspective, the uniform bound (1) appears as a definitive result.

A second striking result of Vesselin Dimitrov is his positive solution of the Schinzel-Zassenhaus
conjecture.

Consider a monic irreducible polynomial P in Z[X], of degree n > 2. A classical result of
Kronecker asserts that, either P is a cyclotomic polynomial (or equivalently all its roots are roots
of unity), or there exists a complex root a of P such |a| > 1. The Schinzel-Zassenhaus conjecture
asserts that the following quantitative form of this dichotomy holds: for some positive universal
constant ¢ > 0, if P is not cyclotomic, then

1 > ¢/n. 2
L, ogla| > c¢/n (2)

Vesselin Dimitrov establishes this inequality with the optimal constant ¢ = (log2)/4, answering
positively a question open for more than half a century, and considered by the experts as completely
out of reach in spite of (or because ?) of its elementary character.

The estimate (2) constitutes a breakthrough in the theory of heights — the real numbers attached
to rational points of algebraic varieties over number fields that provide a measure of their arithmetic
complexity. Since the work of Fekete, Szegdé and Polya, properties of heights of rational points of
the affine line are known to be closely related with potential theory in the plane.

Vesselin Dimitrov establishes the estimate (2) by an original application of a classical arithmetic
rationality criterion on formal series with integral coeflicients, involving the capacity of its domain of
analyticity. A key point of the proof are precise capacity estimates concerning very special figures in
the plane. His derivation of (2) is strikingly clever and elegant, and reveals that suitable “capacitary
arguments” provide some new lines of attack to Diophantine problems considered till now as out of
reach.

The recent joint work of Vesselin Dimitrov with Frank Calegari and Yunging Tang, devoted to
the proof of the unbounded denominators conjecture, provides another wonderful illustration of the
relevance of such capacitary arguments to deep problems in arithmetic geometry.

The unbounded denominators conjecture asserts that, if a modular form f associated to some
finite index subgroup I' of SLy(Z) admits a g-expansion at the cusp ioo with integral coefficients,
then f is actually a modular form associated to a congruence subgroup of SLy(Z):

I(N):={y€SLy(Z) |y=1, mod N},

for some positive integer N.

The elementary formulation of this conjecture does not shed much light on its significance in
arithmetic geometry. Let me simply recall that it has been formulated by Birch in the 70’s, at



the beginning of the revival of the theory of modular forms which eventually led to Wiles’ proof of
Fermat’s conjecture, and stayed open till the breakthrough by Calegari, Dimitrov and Tang.

Let me also emphasize that the statement of this conjecture is in a sense extremely surprising:
it relates two properties of “arithmeticity” concerning modular forms — admitting an integral g¢-
expansion, and being associated to some congruence subgroup of SLy(Z) — which are related by
some highly transcendental construction.

The proof by Calegari, Dimitrov and Tang intertwines very diverse threads. Subtle arithmetic and
group theoretic results related to the congruence subgroup problem play a key role, and also delicate
estimates involving potential theory in the plane and uniformization. All in all, their proof combines
arguments originating from very different areas of arithmetic geometry in some highly unexpected
and clever manner, and is awe inspiring by the fortitude required by their implementation into
details.

For his impressive body of work, Vesselin Dimitrov has been awarded with the 2022 Oberwolfach
Prize by the Oberwolfach Foundation.
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