Laszlo Szekelyhidi was born in Debrecen in 1977 and studied mathematics in Oxford, where
he graduated in 2000, as the best student in his year. | was very happy that | could convince
him to join Max Planck Institute for Mathematics in the Sciences in Leipzig, where he became
my PhD student (but hardly needed any supervision) and graduated in 2003. After a postdoc
position at IAS in Princeton he became a Heinz Hopf lecturer at ETH. In 2007 he was appointed
as the first Bonn Junior Fellow, a position at the newly created Hausdorff Centre at the rank of
Associate Professorship. In 2008 he became a member of the "Junge Akademie’ which admits ten
new members outstanding researchers each year (over all fields of science and the humanities).
In 2009 he his position in Bonn was made permanent.

Laszlo's work has lead to fundamental new insights into the theory of nonlinear partial differential
equations and their applications in continuum mechanics. He has both constructed striking
new counterexamples and developed a new structure theory which has profoundly advanced our
understanding of oscillations effects in nonlinear pde. Let me focus on three highlights of his
work.

Nowhere regular stationary points of polyconvex functionals in nonlinear elasticity  In his thesis
Laszlo obtained a result which is a milestone in the regularity theory for elliptic systems and
variational integrals. He constructs a 2 x 2 elliptic system, which is the Euler-Lagrange equation
of functional with (strictly) polyconvex energy and which admits Lipschitz solutions that are
nowhere C! (here an energy function f(F) defined on 2 x 2 matrices is called polyconvex if it
can be written as a convex function of F' and det F'). This is a striking result since, starting
from the pioneering work of J.M. Ball, polyconvexity has been considered the natural condition
in nonlinear elasticity. Also, a classical result of L.C. Evans guarantees that minimizers of the
functional constructed by Laszlo Szekelyhidi are smooth on an open set of full measure. Thus
Laszlo's work shows that general solutions of the Euler-Lagrange equations behave dramatically
different from minimizers. Viewed more abstractly, Laszlo's example shows that conditions (such
as strong ellipticity or even polyconvexity of the energy) which guarantee regularity for one-
dimensional solutions (or for multi-d solutions with small oscillation of the gradient) do not
prevent large oscillations of the gradient near every point.

V. Sverédk and | had previously constructed an example of wild solutions with a quasiconvex inte-
grand. Quasiconvexity is a natural, but much more implicitly defined and still poorly understood
global ellipticity condition in the calculus of variations. It is implied by the much simpler condition
of polyconvexity. The construction we used, however, cannot work for polyconvexity, due to a
simple combinatorial obstruction. Thus Laszlo Szekelyhidi's result came as quite a surprise.

Compensated compactness, quasiconvexity and the Morrey conjecture In joint work with D.
Faraco which just appeared in Acta Math., Laszlo Szekelehydi has obtained a breakthrough
in Tartar's farreaching programme to systematically study the interaction of linear differential
relations and pointwise constraints and in particular to identify necessary and sufficient conditions
for compactness in this setting. Specifically they consider the following problem. Let D be the
unit disc in R? (any other bounded two-dimensional domain would do as well) and let K be a
compact subset of the space of 2 x 2 matrices R2*2. Consider a sequence of functions

w9 D — R? (1)

which satisfies _
dist(Du', K) — 0 in L?(D;R?*?). (2)

Under which conditions on K is it true that this implies that a subsequence of the gradients
Dul) converges strongly in L2, i.e. satisfies

Du%) — Du in L?(D;R?**%)? (3)

There are two known necessary conditions for compactness, an obvious one and a much more
subtle one. The obvious conditions is

rank (X —Y)#1, VXY eK. (4)

This is an ellipticity condition. If it is violated, i.e., if F and F + a ® b belong to K then
compactness fails due to the presence of one-dimensional oscillations. One may, e.g., take
u)(x) = Fx + aj~'h(jz - b), where h is a periodic Lipschitz function with slopes 0 and 1
(almost everywhere).



The more subtle condition involves a certain configuration of four matrices (often called a T4
configuration) and was independently identified by a number of authors in different contexts
(Scheffer, Tartar, Aumann-Hart, Nesi-Milton, ...). The corresponding counterexample to com-
pactness involves an iterative construction which uses oscillations on infinitely many scales. The
second condition may be expressed as

The set K contains no four matrices X, X5, X3, X4 which form a T4 configuration (5)

The main result of Faraco and Szekelyhidi is that (4) and (5) are also sufficient to obtain
compactness, i.e., (3) (for a subsequence). This is a striking result. In fact it was absolutely not
clear that there exists any simple algebraic condition on K which is necessary and sufficient for
compactness. Indeed, Sverak’s celebrated counterexample to the Morrey conjecture (rank-one
convexity implies quasiconvexity) shows that no such condition exists for maps v : D — R™
for m > 3. In fact the work of Faraco and Szekelyhidi is the strongest hope so far rank-one
convexity might indeed imply quasiconvexity in two dimensions, with far-reaching consequences
for a number of areas.

The proof combines a careful investigation of the geometric and combinatorial properties of rank-
one convex sets, which goes back to Laszlo's thesis, with a subtle use of ideas quasiconformal
analysis. The results of Szekelyhidi are in my view the best results in the field since Sverak's
1992 counterexample.

Irregular solutions of the Euler equation The Euler equations of fluid mechanics have been
an outstanding challenge to mathematics for more than two hundred years. The simplicitiy of
their formulation hides a very rich analytical and geometric structure. One example for this
was Scheffer's striking discovery in 1993 that the Euler equations have (weak) solutions which
are very irregular and can even have compact support in space-time (thus strongly violating
the energy inequality). Scheffer's construction is very clever, but a tour de force and has not
been penetrated by many. A few years later Shnirelman gave a different construction of highly
irregular solutions in a series of three papers. Recently Camillo Delellis and Laszlo Szekelyhidi
developed a completely new route to the problem (Ann. Math., 2009). They realized that by a
clever reformulation of the equations the problem can be tackled by Gromov's convex integration
theory (in a streamlined version due to Kirchheim, which can be used as a simple black box).
Then one just has to verify certain simple facts about the linear algebra of 4 x 4 matrices. Their
approach gives not only a much simpler proof of the old results but also opens the door to new
and even more unexpected results. In particular they can show that there exist highly irregular
solutions which do satisfy not only the weak form of the equation but also the distributional
form of the energy inequality. Their already generated a lot of interest and among other things
C. Villani gave a Bourbaki seminar on the work of DeLellis and Szekelyhidi in November 2008.

Ongoing work  Currently Laszlo Szekelyhidi is working in particular on problems in hydrody-
namics and the rigidity and flexibility of isometric immersions of Riemannian manifolds (and
surprising connections between the two). Classical geometric results show that isometric im-
mersions, which are sufficiently smooth are often rigid. Hilbert showed, e.g., that C® isometric
immersions of S? in R3 are rigid motions. The striking results of Nash and Kuiper in the 50's
nonetheless showed that C! isometric immersions can be rather 'wild’ (e.g., S? can be mapped
into an arbitrarily small ball in R3). Already in the 60's the conjecture appeared that the bor-
derline between rigidity and flexibility is the Holder space C'™'/2. Borisov announced in the 60’s
that there exist C1:® isometric immersions of n-dimensional Riemannian manifolds in R"*! of
Nash-Kuiper type for some small «, depending on n. For an analytic metric and n = 2 Borisov
published a detailed proof in 2004. Conti, De Lellis and Szekelyhidi have recently proved the result
in all dimensions and for metrics which are merely C?, rather than analytic (arXiv:0905.0370v1).
They also discuss an intriguing analogy with the Euler equations in hydrodynamics. A famous
conjecture of Onsager from the 40's states that for o < 1/3 there exist C* solutions of the
Euler equations which do not conserve energy, while solutions in C* with « > 1/3 are energy
conserving.

In conclusion Laszlo Szekelyhidi's work shows both great depth, reflected in the resolution of
longstanding conjectures, and a great breadth and the ability to make very fruitful connections
between different areas of mathematics.



